分析 (1)求出函數(shù)的導(dǎo)數(shù),得到F′($\frac{1}{2}$)=4-4a2=0,解出即可;
(2)問題轉(zhuǎn)化為函數(shù)y=-x2+3x的圖象與直線y=a2在[1,2]上有2個(gè)交點(diǎn),結(jié)合二次函數(shù)的性質(zhì)求出a的范圍即可.
解答 解:F(x)=2x+$\frac{{a}^{2}}{x}$+lnx-3,F(xiàn)′(x)=2-$\frac{{a}^{2}}{{x}^{2}}$+$\frac{1}{x}$,
(1)∵x=$\frac{1}{2}$是函數(shù)y=F(x)的極值點(diǎn),
∴F′($\frac{1}{2}$)=4-4a2=0(a>0),解得:a=1;
(2)∵函數(shù)y=f(x)在區(qū)間[1,2]上有兩個(gè)零點(diǎn),
∴方程a2=-x2+3x在[1,2]上有2個(gè)不等實(shí)根,
即函數(shù)y=-x2+3x的圖象與直線y=a2在[1,2]上有2個(gè)交點(diǎn),
∵函數(shù)y=-x2+3x=-${(x-\frac{3}{2})}^{2}$+$\frac{9}{4}$在[1,2]上的值域是[2,$\frac{9}{4}$],
∴2≤a2<$\frac{9}{4}$(a>0),解得:$\sqrt{2}$≤a<$\frac{3}{2}$,
故實(shí)數(shù)a的范圍是[$\sqrt{2}$,$\frac{3}{2}$).
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用以及二次函數(shù)的性質(zhì),考查轉(zhuǎn)化思想,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 22 | B. | 23 | C. | 24 | D. | 25 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 9 h | B. | 10 h | C. | 11 h | D. | 12 h |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | C${\;}_{7}^{4}$ | B. | -8C${\;}_{7}^{3}$ | C. | 16C${\;}_{7}^{4}$ | D. | C${\;}_{7}^{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com