若點(diǎn)P在-
10π
3
角的終邊上,且P的坐標(biāo)為(-1,y),則y等于( 。
A、-
3
3
B、
3
3
C、-
3
D、
3
考點(diǎn):任意角的三角函數(shù)的定義
專題:三角函數(shù)的求值
分析:由題意根據(jù)終邊相同的角的定義和表示方法,可得點(diǎn)P的終邊在
3
的終邊上,由
y
-1
=tan
3
,求得y的值.
解答: 解:點(diǎn)P在-
10π
3
角的終邊上,而-
10π
3
=-4π+
3
,故點(diǎn)P的終邊在
3
的終邊上,
故有
y
-1
=tan
3
=-
3
,∴y=
3
,
故選:D.
點(diǎn)評:本題主要考查終邊相同的角的定義和表示方法,任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
b
均為單位向量,有下列四個(gè)命題:
P1:|
a
+
b
|>1?<
a
,
b
>∈[0,
3
);
P2:|
a
+
b
|>1?<
a
,
b
>∈(
3
,π];
P3:|
a
-
b
|>1?<
a
,
b
>∈[0,
π
3
);
P4:|
a
-
b
|>1?<
a
,
b
>∈(
π
3
,π].
其中真命題是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知-
π
2
<θ<
π
2
,sinθ+cosθ=a,其中0<a<1,則tanθ可能是( 。
A、-2
B、-
1
2
C、2或-
1
2
D、-1或-
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的終邊在第四象限,且與單位圓交于P(
3
5
y0)
,則
sinα+3cosα
3cosα-sinα
的值等于(  )
A、
3
5
B、
5
13
C、-
13
5
D、-
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={0,1,2,3,4},B={x|x=
n
,n∈A}
,則A∩B的真子集個(gè)數(shù)為( 。
A、5B、6C、7D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=AC,∠BAC=90°,點(diǎn)D為射線BC上一動(dòng)點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF,解答下列問題:

(1)當(dāng)點(diǎn)D在線段BC上時(shí)(與點(diǎn)B不重合),如圖甲,線段CF與線段BD之間的位置關(guān)系是
 
,數(shù)量關(guān)系是
 

(2)當(dāng)點(diǎn)D在線段BC的延長線上時(shí),如圖乙,(1)中的結(jié)論是否仍然成立,為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
3x-2
x2-2x+1
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓兩焦點(diǎn)為F1(-4,0)、F2(4,0),P在橢圓上,若△PF1F2的面積的最大值為12,則橢圓方程是( 。
A、
x2
16
+
y2
9
=1
B、
x2
25
+
y2
9
=1
C、
x2
25
+
y2
16
=1
D、
x2
25
+
y2
4
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,AC=1,AB=2,∠A的平分線AD=
6
2
,則BC=
 

查看答案和解析>>

同步練習(xí)冊答案