19.已知sinα=$\frac{3}{5}$,α∈($\frac{π}{2}$,π).
(Ⅰ)求cosα,tanα;
(Ⅱ)sin(α+$\frac{π}{3}$);
(Ⅲ)cos2α.

分析 (Ⅰ)根據(jù)角度范圍,利用平方關(guān)系,求出cosα,然后利用商數(shù)關(guān)系求出tanα;
(Ⅱ)利用兩角和與差的三角函數(shù)公式展開(kāi),分別代入三角函數(shù)值解答即可;
(Ⅲ)利用余弦的二倍角公式解答即可.

解答 解:(Ⅰ)因?yàn)?sinα=\frac{3}{5}$,$α∈(\frac{π}{2},{π)}$
所以$cosα=-\sqrt{1-{{sin}^2}α}=-\frac{4}{5}$,-----------------------(2分)
$tanα=\frac{sinα}{cosα}=-\frac{3}{4}$;----------------------(4分)
(Ⅱ)$sin(α+\frac{π}{3})=sinαcos\frac{π}{3}+cosαsin\frac{π}{3}$------------------(6分)
=$\frac{3}{5}×\frac{1}{2}+(-\frac{4}{5})×\frac{{\sqrt{3}}}{2}=\frac{{3-4\sqrt{3}}}{10}$------------------------------------(8分)
(Ⅲ)$cos2α=1-2{sin^2}α=1-2×\frac{9}{25}=\frac{7}{25}$.---------------(12分)

點(diǎn)評(píng) 本題考查了三角函數(shù)值的求法;用到了三角函數(shù)的平方關(guān)系,兩角和與差的三角函數(shù)公式以及倍角公式;注意角度范圍對(duì)三角函數(shù)值的影響;屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若圓C1:(x-1)2+(y+3)2=1與圓C2:(x-a)2+(y-b)2=1外離,過(guò)直線l:x-y-1=0上任意一點(diǎn)P分別做圓C1,C2的切線,切點(diǎn)分別為M,N,且均保持|PM|=|PN|,則a+b=( 。
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知數(shù)列{an},其前n項(xiàng)和為Sn,給出下列命題:
①若{an}是等差數(shù)列,則$({10,\frac{{{S_{10}}}}{10}}),({100,\frac{{{S_{100}}}}{100}}),({110,\frac{{{S_{110}}}}{110}})$三點(diǎn)共線;
②若{an}是等差數(shù)列,則${S_m},{S_{2m}}-{S_m},{S_{3m}}-{S_{2m}}({m∈{N^*}})$;
③若${a_1}=1,{S_{n+1}}=\frac{1}{2}{S_n}+2$,則數(shù)列{an}是等比數(shù)列;
④若${a_{n+1}}^2={a_n}{a_{n+2}}$,則數(shù)列{an}是等比數(shù)列.
其中證明題的序號(hào)是①②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知a∈R,函數(shù)f(x)=lnx-ax+1.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)有兩個(gè)不同的零點(diǎn)x1,x2(x1<x2),求實(shí)數(shù)a的取值范圍;
(3)在(2)的條件下,求證:x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知 函數(shù)f(x)=sin(x+$\frac{π}{2}$)+cos(x-$\frac{π}{2}$)+m的最大值為2$\sqrt{2}$,則實(shí)數(shù)m的值為( 。
A.2$\sqrt{2}$B.$\sqrt{2}$C.$\frac{\sqrt{2}}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知三個(gè)數(shù)a=0.32,b=log20.3,c=20.3,則a,b,c之間的大小關(guān)系是( 。
A.b<a<cB.a<b<cC.a<c<bD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知直線l1:kx-y+4=0與直線l2:x+ky-3=0(k≠0)分別過(guò)定點(diǎn)A、B,又l1、l2相交于點(diǎn)M,則|MA|•|MB|的最大值為$\frac{25}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow$=(m,1),且$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{4}$.
(1)求|$\overrightarrow{a}$-2$\overrightarrow$|;
(2)若($\overrightarrow{a}$+λ$\overrightarrow$)與$\overrightarrow$垂直,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知圓M:(x-a)2+y2=4(a>0)與圓N:x2+(y-1)2=1外切,則直線x-y-$\sqrt{2}$=0被圓M截得線段的長(zhǎng)度為( 。
A.1B.$\sqrt{3}$C.2D.2$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案