6、已知p:?x∈R,mx2+1≤0,q:?x∈R,x2+mx+1>0,若p∧q為真命題,則實(shí)數(shù)m的取值范圍是(  )
分析:據(jù)“p∧q”的真假與p、q真假的關(guān)系是:全真則真,有假則假;得到p,q全真;利用不等式的性質(zhì)及二次不等式恒成立令判別式小于0,得到m的范圍.
解答:解:∵p∧q為真命題
∴p、q全真
若p真則m<0
若q真則m2-4<0解得-2<m<2
所以m的范圍為(-2,0)
故選C
點(diǎn)評(píng):本題考查復(fù)合命題的真假與構(gòu)成其簡(jiǎn)單命題的真假的關(guān)系、考查解決二次不等式恒成立時(shí),結(jié)合二次函數(shù)的圖象,從開口方向及判別式兩方面考慮.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知p:?x∈R,sinx+cosx>m,q:?x∈R,x2+m+1<0.若p∨q為真,p∧q為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:?x∈R,m<x2+
1x2
恒成立;q:方程4x2+4(m-2)x+1=0無實(shí)根,若p∨q為真命題,p∧q為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:?x∈R,mx2+1≤0,q:?x∈R,x2+mx+1>0,若pVq為假命題,則實(shí)數(shù)m的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:?x∈R,cosx>m;q:?x∈R,x2+mx+1<0.若p∨q為真,p∧q為假,則實(shí)數(shù)m的取值范圍是
-2≤m<-1,或m>2
-2≤m<-1,或m>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知p:?x∈R,m<x2+
1
x2
恒成立;q:方程4x2+4(m-2)x+1=0無實(shí)根,若p∨q為真命題,p∧q為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案