【題目】將邊長為的正方形沿對角線折疊,使得平面平面,平面,是的中點,且.
(1)求證:;
(2)求二面角的大小.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線與拋物線相交于不同的兩點.
(1)如果直線過拋物線的焦點,求的值;
(2)如果,證明直線必過一定點,并求出該定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,O為坐標原點,點,,Q為平面上的動點,且,線段的中垂線與線段交于點P.
求的值,并求動點P的軌跡E的方程;
若直線l與曲線E相交于A,B兩點,且存在點其中A,B,D不共線,使得,證明:直線l過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2017年9月支付寶宣布在肯德基的KPRO餐廳上線刷臉支付,也即用戶可以不用手機,單單通過刷臉就可以完成支付寶支付,這也是刷臉支付在全球范圍內(nèi)的首次商用試點.某市隨機抽查了每月用支付寶消費金額不超過3000元的男女顧客各300人,調(diào)查了他們的支付寶使用情況,得到如下頻率分布直方圖:
若每月利用支付寶支付金額超過2千元的顧客被稱為“支付寶達人”, 利用支付寶支付金額不超過2千元的顧客稱為“非支付寶達人”.
(I)若抽取的“支付寶達人”中女性占120人,請根據(jù)條件完成上面的列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.001的前提下認為“支付寶達人”與性別有關.
(II)支付寶公司為了進一步了解這600人的支付寶使用體驗情況和建議,從“非支付寶達人” “支付寶達人”中用分層抽樣的方法抽取8人.若需從這8人中隨機選取2人進行問卷調(diào)查,求至少有1人是“支付寶達人”的概率.
附:參考公式與參考數(shù)據(jù)如下
,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在等比數(shù)列{an}中,=2,,=128,數(shù)列{bn}滿足b1=1,b2=2,且{}為等差數(shù)列.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)求數(shù)列{bn}的前n項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
在平面直角坐標系中,N為圓C:上的一動點,點D(1,0),點M是DN的中點,點P在線段CN上,且.
(Ⅰ)求動點P表示的曲線E的方程;
(Ⅱ)若曲線E與x軸的交點為,當動點P與A,B不重合時,設直線與的斜率分別為,證明:為定值;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點O為坐標原點,橢圓C:(a>b>0)的左、右焦點分別為F1,F(xiàn)2,離心率為,點I,J分別是橢圓C的右頂點、上頂點,△IOJ的邊IJ上的中線長為.
(1)求橢圓C的標準方程;
(2)過點H(-2,0)的直線交橢圓C于A,B兩點,若AF1⊥BF1,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知無窮等比數(shù)列的首項、公比均為.
(1)試求無窮等比子數(shù)列各項的和;
(2)是否存在數(shù)列的一個無窮等比子數(shù)列,使得它各項的和為?若存在,求出所有滿足條件的子數(shù)列的通項公式;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】高血壓高血糖和高血脂統(tǒng)稱“三高”.如圖是西南某地區(qū)從2010年至2016年患“三高”人數(shù)y(單位:千人)的折線圖.
(1)由折線圖看出,可用線性回歸模型擬合與的關系,請求出相關系數(shù)(精確到0.01)并加以說明;
(2)建立關于的回歸方程,預測2018年該地區(qū)患“三高”的人數(shù).
參考數(shù)據(jù):,,,.
參考公式:相關系數(shù),
回歸方程 中:,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com