【題目】某家具廠有方木料,五合板,準備加工成書桌和書櫥出售.已知生產(chǎn)每張書桌需要方木料、五合板;生產(chǎn)每個書櫥需要方木枓、五合板.出售一張書桌可獲利潤元,出售一個書櫥可獲利潤元,怎樣安排生產(chǎn)可使所得利潤最大?最大利潤為多少?
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1:(1+4k)x﹣(2﹣3k)y+(2﹣14k)=0,圓C:x2+y2﹣6x﹣8y+9=0.
(1)判斷直線l1與圓的位置關(guān)系,并證明你的結(jié)論;
(2)直線l2過直線l1的定點且l1⊥l2 , 若l1與圓C交與A,B兩點,l2與圓C交與E,F(xiàn)兩點,求AB+EF的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知Sn為數(shù)列{an}的前n項和,an>0,an2+2an=4Sn﹣1.
(1)求{an}的通項公式;
(2)設(shè)bn= ,求{bn}的前n項和Tn .
(3)cn= ,{cn}的前n項和為Dn , 求證:Dn< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中共有8個球,其中3個紅球、2個白球、3個黑球.若從袋中任取3個球,則所取3個球中至多有1個紅球的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在四面體ABCD中,E,F(xiàn)分別是AC,BD的中點,若AB=2,CD=4,EF⊥AB,則EF與CD所成的角的度數(shù)為( )
A.90°
B.45°
C.60°
D.30°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知單調(diào)遞增的等比數(shù)列滿足,且是, 的等差中項.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)若數(shù)列滿足,求數(shù)列的通項公式;
(Ⅲ)在(Ⅱ)的條件下,設(shè),問是否存在實數(shù)使得數(shù)列()是單調(diào)遞增數(shù)列?若存在,求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,2,在Rt△ABC中,AB=BC=4,點E在線段AB上,過點E作交AC于點F,將△AEF沿EF折起到△PEF的位置(點A與P重合),使得∠PEB=60°.
(1)求證:EF⊥PB;
(2)試問:當(dāng)點E在何處時,四棱錐P﹣EFCB的側(cè)面的面積最大?并求此時四棱錐P﹣EFCB的體積及直線PC與平面EFCB所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點Pi(xi , yi)在直線li:aix+biy=ci上,若ai+bi=ici(i=1,2),且|P1P2|≥ 恒成立,則 + = .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(1,sinx), =(cos(2x+ ),sinx),函數(shù)f(x)= ﹣ cos2x
(1)求函數(shù)f(x)的解析式及其單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[0, ]時,求函數(shù)f(x)的值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com