已知a、b是異面直線,A、B是a上的兩點(diǎn),C、D是b上的兩點(diǎn),M、N分別是線段AC和BD的中點(diǎn),則MN和a的位置關(guān)系是(  )
A、異面B、平行
C、相交D、平行、相交或異面
考點(diǎn):空間中直線與平面之間的位置關(guān)系
專題:綜合題,空間位置關(guān)系與距離
分析:利用反證法,判定MN和a只能是異面直線.
解答: 解:若MN和a平行或相交,設(shè)它們確定的平面為α,則A、B、M、N均在α內(nèi),即AM?α,BN?α.
又C∈AM,D∈BN,
∴C∈α,D∈α,即CD?α,這樣直線a、b都在α內(nèi),與已知a、b是異面直線矛盾.
故MN和a只能是異面直線.
故選:A.
點(diǎn)評(píng):本題考查空間中直線與平面之間的位置關(guān)系,考查學(xué)生分析解決問題的能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓方程x2+3y2=12,過點(diǎn)D(2,0)的直線l交橢圓于A、B兩點(diǎn),求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在多面體ABCDEF中,點(diǎn)O是矩形ABCD的對(duì)角線的交點(diǎn),三角形CDE是等邊三角形,棱EF∥BC且EF=
1
2
BC=2.求證:FO∥平面CDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)=|x-1|+|x+2|的最小值為a.
(1)求a的值;
(2)若m,n是正實(shí)數(shù),且m+n=a,求
1
m
+
2
n
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若定義在R上的函數(shù)f(x)滿足:
①對(duì)任意x,y∈R,都有:f(x+y)=f(x)+f(y)-1;
②當(dāng)x<0時(shí),f(x)>1.
(Ⅰ)試判斷函數(shù)f(x)-1的奇偶性;
(Ⅱ)試判斷函數(shù)f(x)的單調(diào)性;
(Ⅲ)若不等式f(a2-2a-7)+
1
2
>0的解集為{a|-2<a<4},求f(5)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

利用計(jì)算機(jī)產(chǎn)生0~1之間的群與隨機(jī)數(shù)a,則事件-
1
2
<3a-1<0發(fā)生的概率為( 。
A、
1
3
B、
1
4
C、
1
5
D、
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義
a
?
b
=|
a
|•|
b
|sinθ(θ為
a
b
的夾角),給出下列命題.
a
?
b
=
b
?
a
;                  
②λ(
a
?
b
)=(λ
a
)?
b
;
a
?(
b
+
c
)=
a
?
b
+
a
?
c
;       
a
b
?
a
?
b
=|
a
|•|
b
|;
⑤設(shè)
a
=(x1,y1),
b
=(x2,y2),則
a
?
b
=|x1y2-x2y1|
其中正確的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=0,an+1=an+2n(n∈N*),那么a2011的值是( 。
A、2 0112
B、2 012×2 011
C、2 009×2 010
D、2 010×2 011

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=3sin(2x+
π
6
)的部分圖象如圖所示.
(1)寫出f(x)的最小正周期及圖中x0、y0的值;
(2)求f(x)在區(qū)間[
π
12
,
π
2
]
上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案