(本小題滿分12分)

如圖,在矩形ABCD中,已知A(2,0)、C(-2,2),點(diǎn)PBC邊上移動(dòng),線段OP的垂直平分線交y軸于點(diǎn)E,點(diǎn)M滿足(Ⅰ)求點(diǎn)M的軌跡方程;
(Ⅱ)已知點(diǎn)F(0,),過點(diǎn)F的直線l與點(diǎn)M的軌跡相交于QR兩點(diǎn),且求實(shí)數(shù)的取值范圍.
(Ⅰ) 點(diǎn)M的軌跡方程為x2=-4(y-1)( ) (Ⅱ)
(Ⅰ)依題意,設(shè)Pt,2)(),Mx,y).
當(dāng)t=0時(shí),點(diǎn)M與點(diǎn)E重合,則M(0,1),
當(dāng)t≠0時(shí),線段OP的垂直平分線方程為:…… 3分


 顯然,點(diǎn)(0,1)適合上式 .
故點(diǎn)M的軌跡方程為x2=-4(y-1)( )… 6分
(Ⅱ)設(shè)x2+4kx-2=0.
設(shè)Qx1,y1)、Rx2,y2),則……… 8分
,.消去x2,得.…10分

解得   12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知中,,成等差數(shù)列,求點(diǎn)的軌跡。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題12分)已知橢圓C的焦點(diǎn)在x軸上,它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn),離心率。(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過橢圓C的右焦點(diǎn)作直線交橢圓C于A、B兩點(diǎn),交y軸于M,若為定值嗎?證明你的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知點(diǎn)P(3,0),點(diǎn)A,B分別在x軸負(fù)半軸和y軸上,且 當(dāng)點(diǎn)B在y軸上移動(dòng)時(shí)記點(diǎn)C的軌跡為E.(Ⅰ)求曲線E的方程;(Ⅱ)已知向量為方向向量的直線l交曲線E于不同的兩點(diǎn)M,N,若D(-1,0),的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)為橢圓左、右焦點(diǎn),過橢圓中心任作一條直線與橢圓交于兩點(diǎn),當(dāng)四邊形面積最大時(shí),的值等于         .               

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知為橢圓E的兩個(gè)左右焦點(diǎn),拋物線C以為頂點(diǎn),為焦點(diǎn),設(shè)P為橢圓與拋物線的一個(gè)交點(diǎn),如果橢圓離心率e滿足,則e的值為( )

M

 
A.             B.          C.          D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知不過坐標(biāo)原點(diǎn)O的直線L與拋物線y2=2x相交于A、B兩點(diǎn),且OA⊥OB,OE⊥AB于E.
①求證:直線L過定點(diǎn);
②求點(diǎn)E的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓
x2
2
+y2=1,其右焦點(diǎn)為F,直線l經(jīng)過點(diǎn)F與橢圓交于A,B
兩點(diǎn),且|AB|=
4
2
3

(1)求直線l的方程;
(2)求△OAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)拋物線y2=2px(p為常數(shù))的準(zhǔn)線與X軸交于點(diǎn)K,過K的直線l與拋物線交于A、B兩點(diǎn),則
OA
OB
=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案