分析 (1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;
(2)解關(guān)于導(dǎo)函數(shù)的方程,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最值.
解答 解:(1)f′(x)=x2-4=(x+2)(x-2),
令f′(x)>0 得x<-2 或 x>2
令f′(x)<0 得-2<x<2
所以函數(shù)f(x)=$\frac{1}{3}$x3-4x+4的單調(diào)遞增區(qū)間為(-∞,-2)和(2,+∞);
所以函數(shù)f(x)=$\frac{1}{3}$x3-4x+4的單調(diào)遞減區(qū)間為(-2,2);
(2)f′(x)=x2-4=(x+2)(x-2),
令f′(x)=0,解得x1=-2(舍去),x2=2.
當x變化時,f′(x),f(x)的變化情況如下表:
x | 0 | (0,2) | 2 | (2,3) | 3 |
f′(x) | - | 0 | + | ||
f(x) | 4 | 單調(diào)遞減 | 極小值-$\frac{4}{3}$ | 單調(diào)遞增 | 1 |
點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 7 | B. | 12 | C. | 14 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2或0 | B. | 0 | C. | -2或2 | D. | -2或0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | 1 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (12,$\frac{25}{2}$) | B. | (16,24) | C. | (12,+∞) | D. | (18,24) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com