【題目】已知橢圓C的方程為 + =1(a>b>0),雙曲線 ﹣ =1的一條漸近線與x軸所成的夾角為30°,且雙曲線的焦距為4 .
(1)求橢圓C的方程;
(2)設F1 , F2分別為橢圓C的左,右焦點,過F2作直線l(與x軸不重合)交于橢圓于A,B兩點,線段AB的中點為E,記直線F1E的斜率為k,求k的取值范圍.
【答案】
(1)解:由一條漸近線與x軸所成的夾角為30°,則 =tan30°= ,即a2=3b2,
由2c=4 .c=2 ,則a2+b2=8,
解得:a2=8,b2=2,
∴橢圓的標準方程:
(2)解:由(1)可知:F2(2,0),直線AB的方程:x=ty+2,A(x1,y1),B(x2,y2),
,整理得:(t2+3)y2+4ty﹣2=0,
y1+y2=﹣ ,x1+x2= ,
則E( ,﹣ ),
由F1(﹣2,0),則直線F1E的斜率k= =﹣ ,
①當t=0時,k=0,
②當t≠0時,丨k丨= = ≤ ,
即丨k丨∈(0, ],
∴k的取值范圍[﹣ , ]
【解析】(1)由雙曲線的漸近線方程及斜率公式,即可求得a2=3b2,c=2 ,即a2+b2=8,即可求得a和b的值,求得橢圓方程;(2)設直線AB的方程,代入橢圓方程,利用韋達定理求得斜率丨k丨用t表示,利用基本不等式即可求得k的取值范圍.
科目:高中數學 來源: 題型:
【題目】水培植物需要一種植物專用營養(yǎng)液,已知每投放(且)個單位的營養(yǎng)液,它在水中釋放的濃度 (克/升)隨著時間 (天)變化的函數關系式近似為,其中,若多次投放,則某一時刻水中的營養(yǎng)液濃度為每次投放的營養(yǎng)液在相應時刻所釋放的濃度之和,根據經驗,當水中營養(yǎng)液的濃度不低于4(克/升)時,它才能有效.
(1)若只投放一次2個單位的營養(yǎng)液,則有效時間最多可能達到幾天?
(2)若先投放2個單位的營養(yǎng)液,3天后再投放個單位的營養(yǎng)液,要使接下來的2天中,營養(yǎng)液能夠持續(xù)有效,試求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
(Ⅰ)求函數的最小正周期和單調遞增區(qū)間;
(Ⅱ)當時,方程恰有兩個不同的實數根,求實數的取值范圍;
(Ⅲ)將函數的圖象向右平移()個單位后所得函數的圖象關于原點中心對稱,求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校一個校園景觀的主題為“托起明天的太陽”,其主體是一個半徑為5米的球體,需設計一個透明的支撐物將其托起,該支撐物為等邊圓柱形的側面,厚度忽略不計.軸截面如圖所示,設.(注:底面直徑和高相等的圓柱叫做等邊圓柱.)
(1)用表示圓柱的高;
(2)實踐表明,當球心和圓柱底面圓周上的點的距離達到最大時,景觀的觀賞效
果最佳,求此時的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數有如下性質:該函數在上是減函數,在上是增函數.
(1)已知,利用上述性質,求函數的單調區(qū)間和值域;
(2)對于(1)中的函數和函數,若對任意,總存在,使得成立,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖四邊形ABCD為邊長為2的菱形,G為AC與BD交點,平面BED⊥平面ABCD,BE=2,AE=2 .
(Ⅰ)證明:BE⊥平面ABCD;
(Ⅱ)若∠ABC=120°,求直線EG與平面EDC所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com