已知△ABC的面積為3,設(shè)
AB
AC
的夾角為θ.
(1)若
AB
AC
=6,求θ的值;
(2)若
π
4
≤θ≤
π
2
,求函數(shù)f(θ)=2sin2
π
4
+θ)-
3
cos2θ的最大值及此時θ的值.
考點:三角函數(shù)的最值,平面向量數(shù)量積的運算,數(shù)量積表示兩個向量的夾角
專題:三角函數(shù)的求值,解三角形
分析:(1)由三角形的面積公式和向量的夾角公式,得到方程組,解得即可.
(2)利用倍角公式和正弦函數(shù)的和差公式,計算即可.
解答: 解:(1)由已知得,
1
2
|
AB
||
AC
|sinθ=3
|
AB|
|
AC
|cosθ=6
,
解得tanθ=1,又θ∈[0,π],
故θ=
π
4
,
(2)∵f(θ)=2sin2
π
4
+θ)-
3
cos2θ=1-cos[2(
π
4
+θ)]-
3
cos2θ=sin2θ-
3
cos2θ+1=2sin(2θ-
π
3
),
π
4
≤θ≤
π
2
,
π
6
≤2θ-
π
3
2
3
π

當2θ-
π
3
=
π
2
,即θ=
12
時,f(θ)max=3,
點評:本題主要考查了向量的夾角公式,以及三角函數(shù)最值問題,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知y=f(x)的定義域(0,+∞)且滿足以下三個條件:
①對任意實數(shù)m,n都有f(mn)=f(m)+f(n)成立;
②f(x)在定義域上單調(diào)遞減;
③f(2)=-1.
(Ⅰ)求f(1),f(4)的值;
(Ⅱ)求不等式f(x2-x)≤f(3x+2)+2的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,PA⊥平面ABCD,四邊形ABCD是矩形,PA=AD=a,M、N分別是AB、PC的中點.
(Ⅰ)求證:MN∥平面PAD;
(Ⅱ)求平面PCD與平面ABCD所成二面角的大;
(Ⅲ)求證:平面MND⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx+x2+ax,a∈R.
(1)若函數(shù)f(x)在其定義域上為增函數(shù),求a的取值范圍;
(2)當a=1時,函數(shù)g(x)=
f(x)
x+1
-x在區(qū)間[t,+∞)(t∈N*)上存在極值,求t的最大值.
(參考數(shù)值:自然對數(shù)的底數(shù)e≈2.71828)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a(x-2)(x-
a-1
a
),其中a≠0.
(Ⅰ)若a=1,求f(x)在區(qū)間[0,3]上的最大值和最小值;
(Ⅱ)解關(guān)于x的不等式f(x)>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

移動公司根據(jù)市場客戶的不同需求,對某地區(qū)的手機套餐通話費提出兩種優(yōu)惠方案,兩種方案所付電話費(元)與通話時間(分鐘)之間的關(guān)系如圖所示(實線部分:MN與CD平行即直線方程y=kx+b中的斜率k相等).
(1)若通話時間為兩小時,按方案A,B各付話費多少元?
(2)方案B從400分鐘以后,每分鐘收費多少元?
(3)通話時間在什么范圍內(nèi),方案B比方案A優(yōu)惠?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
2
sin2x-cos2x-
1
2
,x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期和最大值;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax-
a
x
-2lnx(a∈R).
(1)當a>0時,求f(x)的單調(diào)區(qū)間;
(2)若
2e
e2+1
<a<1,設(shè)x1,x2是函數(shù)f(x)的兩個極值點,且x1<1<x2,記m、n分別為f(x)的極大值和極小值,令z=m-n,求實數(shù)z的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知扇形周長為20,當扇形的面積最大時,扇形的中心角為
 
弧度.

查看答案和解析>>

同步練習冊答案