【題目】如圖,在四棱錐 底面,底面為正方形 , 分別是的中點(diǎn).

(Ⅰ)求證:

(Ⅱ)求與平面所成角的正弦值.

【答案】(Ⅰ)見解析;(Ⅱ) .

【解析】試題分析:

()由題意可證得 ,平面,由線面垂直的性質(zhì)有,由三角形中位線的性質(zhì)可得,則

()(方法一)軸,以軸,以軸,建立空間直角坐標(biāo)系,計(jì)算可得

平面的一個(gè)法向量,則直線與平面所成角的正弦值為.

(方法二)由等體積法可得點(diǎn)到平面的距離,據(jù)此可得與平面所成角的正弦值為.

試題解析:

Ⅰ)因?yàn)?/span>底面, 平面,所以

又因?yàn)檎叫?/span>中, ,

所以平面

又因?yàn)?/span>平面,所以

因?yàn)?/span>分別是、的中點(diǎn),所以

所以

Ⅱ)(方法一)由(Ⅰ)可知, , 兩兩垂直,以軸,以軸,以軸,設(shè)

, , , ,

, ,

設(shè)平面的一個(gè)法向量,

,解得

設(shè)直線與平面所成角為,則

(方法二)設(shè)點(diǎn)到平面的距離為

等體積法求出

設(shè)直線與平面所成角為,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)為調(diào)查來自南方和北方的同齡大學(xué)生的身高差異,從2016級(jí)的年齡在18~19歲之間的大學(xué)生中隨機(jī)抽取了來自南方和北方的大學(xué)生各10名,測(cè)量他們的身高,量出的身高如下(單位:cm):

南方:158,170,166,169,180,175,171,176,162,163.

北方:183,173,169,163,179,171,157,175,184,166.

(1)根據(jù)抽測(cè)結(jié)果,畫出莖葉圖,對(duì)來自南方和北方的大學(xué)生的身高作比較,寫出統(tǒng)計(jì)結(jié)論.

(2)設(shè)抽測(cè)的10名南方大學(xué)生的平均身高為cm,將10名南方大學(xué)生的身高依次輸入如圖所示的程序框圖進(jìn)行運(yùn)算,問輸出的s大小為多少?并說明s的統(tǒng)計(jì)學(xué)意義。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)有下面四個(gè)命題
p1:若復(fù)數(shù)z滿足 ∈R,則z∈R;
p2:若復(fù)數(shù)z滿足z2∈R,則z∈R;
p3:若復(fù)數(shù)z1 , z2滿足z1z2∈R,則z1= ;
p4:若復(fù)數(shù)z∈R,則 ∈R.
其中的真命題為( 。
A.p1 , p3
B.p1 , p4
C.p2 , p3
D.p2 , p4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交通指數(shù)是交通擁堵指數(shù)的簡(jiǎn)稱,是綜合反映道路網(wǎng)暢通或擁堵的概念,記交通指數(shù)為T.其

范圍為[0,10],分別有五個(gè)級(jí)別:T[0,2)暢通;T[2,4)基本暢通; T[4,6)輕度擁堵; T[6,8)中度擁堵;T[8,10]嚴(yán)重?fù)矶?/span>晚高峰時(shí)段(T2),從某市交通指揮中心選取了市區(qū)20個(gè)交通路段,依據(jù)其交通指數(shù)數(shù)據(jù)繪制的部分直方圖如圖所示.

(1)請(qǐng)補(bǔ)全直方圖,并求出輕度擁堵、中度擁堵、嚴(yán)重?fù)矶侣范胃饔卸嗌賯(gè)?

(2)用分層抽樣的方法從交通指數(shù)在[4,6),[6,8),[8,l0]的路段中共抽取6個(gè)路段,求依次抽取的三個(gè)級(jí)別路段的個(gè)數(shù);

(3)(2)中抽出的6個(gè)路段中任取2個(gè),求至少一個(gè)路段為輕度擁堵的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0),四點(diǎn)P1(1,1),P2(0,1),P3(﹣1, ),P4(1, )中恰有三點(diǎn)在橢圓C上.(12分)
(1)求C的方程;
(2)設(shè)直線l不經(jīng)過P2點(diǎn)且與C相交于A,B兩點(diǎn).若直線P2A與直線P2B的斜率的和為﹣1,證明:l過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn.已知2Sn3n3.

(1)求{an}的通項(xiàng)公式;

(2)若數(shù)列{bn}滿足anbnlog3an,求{bn}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c= ,則C=(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)曲線與直線有兩個(gè)相異的交點(diǎn)時(shí),實(shí)數(shù)的取值范圍是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ln(x+1)﹣ax,a∈R.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)x>1時(shí),f(x﹣1)≤ 恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案