分析 (1)求出AB的斜率,利用點斜式求CD邊所在直線的方程;
(2)圓心顯然應(yīng)在AC的中點處,求出圓的半徑,即可求以AC為直徑的圓M的標準方程.
解答 解:(1)由題意kAB=-$\frac{1}{2}$…3分
直線CD平行于AB,且過C(3,2),
所以直線CD的方程為y-2=-$\frac{1}{2}$(x-3),即x+2y-7=0;…6分
(2)圓心顯然應(yīng)在AC的中點處,記為M($\frac{3}{2}$,$\frac{3}{2}$),…8分
R=MA=$\sqrt{\frac{9}{4}+\frac{1}{4}}$=$\sqrt{\frac{5}{2}}$,…10分
所以圓M的標準方程為(x-$\frac{3}{2}$)2+(y-$\frac{3}{2}$)2=$\frac{5}{2}$.…12分.
點評 本題考查直線與圓的方程,考查學生的計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{6}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{5}{4}$ | B. | $\frac{3}{2}$ | C. | $\frac{5}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com