【題目】某市為創(chuàng)建全國衛(wèi)生城市,引入某公司的智能垃圾處理設(shè)備.已知每臺設(shè)備每月固定維護成本萬元,每處理一萬噸垃圾需增加萬元維護費用,每月處理垃圾帶來的總收益萬元與每月垃圾處理量(萬噸)滿足關(guān)系:(注:總收益=總成本+利潤)

1)寫出每臺設(shè)備每月處理垃圾獲得的利潤關(guān)于每月垃圾處理量的函數(shù)關(guān)系;

2)該市計劃引入臺這種設(shè)備,當(dāng)每臺每月垃圾處理量為何值時,所獲利潤最大?并求出最大利潤.

【答案】1;(28(萬噸),230(萬元)

【解析】

1)直接由已知結(jié)合利潤總收益總成本可得每臺設(shè)備每月處理垃圾獲得的利潤關(guān)于每月垃圾處理量的函數(shù)關(guān)系;

2)分段求出函數(shù)的最大值,則答案可求.

解:(1)由題意可得:

因為每月固定維護成本萬元,每處理一萬噸垃圾需增加萬元維護費用,

則每月成本為萬元,又因為:利潤總收益總成本,

所以,每臺設(shè)備每月處理垃圾獲得的利潤關(guān)于每月垃圾處理量的函數(shù)關(guān)系為:

2)由(1)可得:當(dāng)時,

當(dāng)時,;

當(dāng)時,為減函數(shù),則

當(dāng)時,每臺設(shè)備每月處理垃圾所獲利潤最大

最大利潤為:(萬元)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓與圓.

(1)求證兩圓相交;

(2)求兩圓公共弦所在直線的方程;

(3)求過兩圓的交點且圓心在直線上的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題14分)設(shè),

1)當(dāng)時,求曲線處的切線方程;

2)如果存在,使得成立,

求滿足上述條件的最大整數(shù)

3)如果對任意的,都有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】魯班鎖是中國傳統(tǒng)的智力玩具,起源于古代漢族建筑中首創(chuàng)的榫卯結(jié)構(gòu),這種三維的拼插器具內(nèi)部的凹凸部分(即榫卯結(jié)構(gòu))嚙合,十分巧妙,外觀看是嚴(yán)絲合縫的十字立方體,其上下、左右、前后完全對稱,從外表上看,六根等長的正四棱柱分成三組,經(jīng)榫卯起來,如圖,若正四棱柱的高為,底面正方形的邊長為,現(xiàn)將該魯班鎖放進一個球形容器內(nèi),則該球形容器的表面積的最小值為( )(容器壁的厚度忽略不計)

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題px∈(-2,1),使等式x2-x-m=0成立,命題q表示橢圓.

1)若命題p為真命題,求實數(shù)m的取值范圍.

2)判斷命題p為真命題是命題q為真命題的什么條件(請用簡要過程說明是充分不必要條件、必要不充分條件、充要條件既不充分也不必要條件中的哪一個)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線Cy2=2x的焦點為F,過焦點F的直線交拋物線于A,B兩點,過A,B作準(zhǔn)線的垂線交準(zhǔn)線與P,Q兩點.RPQ的中點.

1)證明:以PQ為直徑的圓恒過定點F

2)證明:ARFQ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點為圓心的圓與直線:相切.

1)求圓的方程;

2)若圓上有兩點關(guān)于直線對稱,且,求直線MN的方程;

3)圓x軸相交于A、B兩點,圓內(nèi)的動點P使|PA|、|PO|、|PB|成等比數(shù)列,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某服裝店對過去100天實體店和網(wǎng)店的銷售量(單位:件)進行了統(tǒng)計,制成頻率分布直方圖如下:

1)已知該服裝店過去100天的銷售中,實體店和網(wǎng)店的銷售量都不低于50件的頻率為0.24,求過去100天的銷售中,實體店和網(wǎng)店至少有一邊銷售量不低于50件的天數(shù);

2)根據(jù)頻率分布直方圖,求該服裝店網(wǎng)店銷售量的中位數(shù)的估計值(精確到0.01.

查看答案和解析>>

同步練習(xí)冊答案