【題目】以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程是ρ=2,矩形ABCD內(nèi)接于曲線C1 , A,B兩點(diǎn)的極坐標(biāo)分別為(2, )和(2, ),將曲線C1上所有點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)縮短為原來(lái)的一半,得到曲線C2 .
(1)寫(xiě)出C,D的直角坐標(biāo)及曲線C2的參數(shù)方程;
(2)設(shè)M為C2上任意一點(diǎn),求|MA|2+|MB|2+|MC|2+|MD|2的取值范圍.
【答案】
(1)解:曲線C1的極坐標(biāo)方程是ρ=2,矩形ABCD內(nèi)接于曲線C1,A,B兩點(diǎn)的極坐標(biāo)分別為(2, )和(2, ),利用對(duì)稱(chēng)性可得:C ,D ,分別化為直角坐標(biāo):C ,D .
曲線C1的極坐標(biāo)方程是ρ=2,化為直角坐標(biāo)方程:x2+y2=4.
設(shè)曲線C2.上的任意一點(diǎn)坐標(biāo)P(x,y),曲線C1的任意一點(diǎn)P′(x′,y′),則 ,可得 .代入(x′)2+(y′)2=4,得x2+4y2=4,其參數(shù)方程為:
(2)解:A ,B .設(shè)M(2cosθ,sinθ).
|MA|2+|MB|2+|MC|2+|MD|2= + +(sinθ﹣1)2+ +(sinθ+1)2+ +(sinθ+1)2
=12cos2θ+20∈[20,32]
【解析】(1)利用對(duì)稱(chēng)性可得:C ,D ,分別化為直角坐標(biāo).曲線C1的極坐標(biāo)方程是ρ=2,利用互化公式可得直角坐標(biāo)方程.設(shè)曲線C2 . 上的任意一點(diǎn)坐標(biāo)P(x,y),曲線C1的任意一點(diǎn)P′(x′,y′),則 ,可得 .代入圓的方程可得x2+4y2=4,可得參數(shù)方程.(2)A ,B .設(shè)M(2cosθ,sinθ).利用兩點(diǎn)之間的距離公式、三角函數(shù)的基本關(guān)系式及其值域即可得出.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)求經(jīng)過(guò)直線l1:x+3y-3=0,l2:x-y+1=0的交點(diǎn)且平行于直線2x+y-3=0的直線方程.
(2)求證:不論m取什么實(shí)數(shù),直線(2m-1)x+(m+3)y-(m-11)=0都經(jīng)過(guò)一個(gè)定點(diǎn),并求出這個(gè)定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,過(guò)右焦點(diǎn)作垂直于橢圓長(zhǎng)軸的直線交橢圓于兩點(diǎn),且為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2) 設(shè)直線與橢圓相交于兩點(diǎn),若.
①求的值;
②求的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,且a1=1,an+1=﹣SnSn+1 , 則使 取得最大值時(shí)n的值為明 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= x2+(a+1)x+2ln(x﹣1).
(1)若曲線y=f(x)在點(diǎn)(2,f(2))處的切線與直線2x﹣y+1=0平行,求出這條切線的方程;
(2)討論函數(shù)f(x)的單調(diào)區(qū)間;
(3)若對(duì)于任意的x∈(1,+∞),都有f(x)<﹣2,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】盒子里裝有大小質(zhì)量完全相同且分別標(biāo)有數(shù)字1、2、3、4的四個(gè)小球,從盒子里隨機(jī)摸出兩個(gè)小球,那么事件“摸出的小球上標(biāo)有的數(shù)字之和大于數(shù)字之積”的概率是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,.
當(dāng)時(shí),求的值;
當(dāng)時(shí),是否存在正整數(shù)n,r,使得、、,依次構(gòu)成等差數(shù)列?并說(shuō)明理由;
當(dāng)時(shí),求的值用m表示.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)到準(zhǔn)線的距離為,直線與拋物線交于兩點(diǎn),過(guò)這兩點(diǎn)分別作拋物線的切線,且這兩條切線相交于點(diǎn).
(1)若的坐標(biāo)為,求的值;
(2)設(shè)線段的中點(diǎn)為,點(diǎn)的坐標(biāo)為,過(guò)的直線與線段為直徑的圓相切,切點(diǎn)為,且直線與拋物線交于兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=xlnx﹣ x2﹣x+a(a∈R).
(1)當(dāng)a=0時(shí),求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(。┣骯的取值范圍;
(ⅱ)設(shè)兩個(gè)極值點(diǎn)分別為x1 , x2 , 證明:x1x2>e2 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com