【題目】設(shè)函數(shù)

1)求的單調(diào)區(qū)間;

2)若為整數(shù), 且當(dāng),, 的最大值.

【答案】1)若,增區(qū)間為,若減區(qū)間為,增區(qū)間為;(2

【解析】試題分析:(1)利用導(dǎo)數(shù)工具,結(jié)合分類討論思想對進行分類討論;(2)由,代入原不等式后可將原命題轉(zhuǎn)化為:當(dāng),,令, 從而原命題可轉(zhuǎn)化為 ,然后利用導(dǎo)數(shù)工具求

試題解析:(1)函數(shù)的定義域是,,,

所以函數(shù)上單調(diào)遞增.若, 則當(dāng),; 當(dāng),; 所以,單調(diào)遞減,

單調(diào)遞增.

2)由于,所以,故當(dāng),等價于,

,由(1)知,當(dāng), 函數(shù)

上單調(diào)遞增, 上存在唯一的零點,

上存在唯一的零點, 設(shè)此零點為,則有,當(dāng),;

當(dāng),; 所以上的最小值為,又由,可得

,由于 式等價于,故整數(shù)的最大值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1,求的極值和單調(diào)區(qū)間;

2若在區(qū)間上至少存在一點,使得成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】眾所周知,乒乓球是中國的國球,乒乓球隊內(nèi)部也有著很嚴格的競爭機制,為了參加國際大賽,種子選手甲與三位非種子選手乙、丙、丁分別進行一場內(nèi)部對抗賽,按以往多次比賽的統(tǒng)計,甲獲勝的概率分別為,,且各場比賽互不影響

1若甲至少獲勝兩場的概率大于,則甲入選參加國際大賽參賽名單,否則不予入選,問甲是否會入選最終的大名單?

2求甲獲勝場次的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在五棱錐中,平面,,,,, ,,是等腰三角形.

(1)求證:平面平面;

2求側(cè)棱上是否存在點,使得與平面所成角大小為,若存在,求出點位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某次測量中得到的A樣本數(shù)據(jù)如下:82,84,84,86,86,86,888888,88若樣本B數(shù)據(jù)恰好是樣本A數(shù)據(jù)都加上2后所得數(shù)據(jù),A,B兩樣本的下列數(shù)字特征對應(yīng)相同的是(  )

A. 眾數(shù) B. 平均數(shù)

C. 中位數(shù) D. 標(biāo)準(zhǔn)差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

I)討論函數(shù)的單調(diào)性;

II)若,證明:對任意,總有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時,求函數(shù)的最小值

(2)若函數(shù)的最小值為,令,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題:直線與圓有兩個交點;命題:.

(1)若為真命題,求實數(shù)的取值范圍;

(2)若為真命題,為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一對父子參加一個親子摸獎游戲,其規(guī)則如下:父親在裝有紅色、白色球各兩個的甲袋子里隨機取兩個球,兒子在裝有紅色、白色、黑色球各一個的乙袋子里隨機取一個球,父子倆取球互相獨立,兩人各摸球一次合在一起稱為一次摸獎,他們?nèi)〕龅娜齻球的顏色情況與他們獲得的積分對應(yīng)如下表:

所取球的情況

三個球均為紅色

三個球均為不同色

恰有兩球為紅色

其他情況

所獲得的積分

180

90

60

0

(1)求一次摸獎中,所取的三個球中恰有兩個是紅球的概率;

(2)設(shè)一次摸獎中,他們所獲得的積分為,的分布列及均值(數(shù)學(xué)期望);

(3)按照以上規(guī)則重復(fù)摸獎三次,求至少有兩次獲得積分為60的概率.

查看答案和解析>>

同步練習(xí)冊答案