【題目】設(shè)函數(shù).
(1)求的單調(diào)區(qū)間;
(2)若為整數(shù), 且當(dāng)時,, 求的最大值.
【答案】(1)若,增區(qū)間為,若,減區(qū)間為,增區(qū)間為;(2).
【解析】試題分析:(1)利用導(dǎo)數(shù)工具,結(jié)合分類討論思想對進行分類討論;(2)由,代入原不等式后可將原命題轉(zhuǎn)化為:當(dāng)時,,令, 從而原命題可轉(zhuǎn)化為 ,然后利用導(dǎo)數(shù)工具求.
試題解析:(1)函數(shù)的定義域是,若,則,
所以函數(shù)在上單調(diào)遞增.若, 則當(dāng)時,; 當(dāng)時,; 所以,在單調(diào)遞減,
在單調(diào)遞增.
(2)由于,所以,故當(dāng)時,等價于① 令,
則,由(1)知,當(dāng)時, 函數(shù)在
上單調(diào)遞增, 而在上存在唯一的零點, 故
在上存在唯一的零點, 設(shè)此零點為,則有,當(dāng)時,;
當(dāng)時,; 所以在上的最小值為,又由,可得
,由于 ①式等價于,故整數(shù)的最大值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求的極值和單調(diào)區(qū)間;
(2)若在區(qū)間上至少存在一點,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】眾所周知,乒乓球是中國的國球,乒乓球隊內(nèi)部也有著很嚴格的競爭機制,為了參加國際大賽,種子選手甲與三位非種子選手乙、丙、丁分別進行一場內(nèi)部對抗賽,按以往多次比賽的統(tǒng)計,甲獲勝的概率分別為,,,且各場比賽互不影響.
(1)若甲至少獲勝兩場的概率大于,則甲入選參加國際大賽參賽名單,否則不予入選,問甲是否會入選最終的大名單?
(2)求甲獲勝場次的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在五棱錐中,平面,∥,∥,∥,, ,,是等腰三角形.
(1)求證:平面平面;
(2)求側(cè)棱上是否存在點,使得與平面所成角大小為,若存在,求出點位置,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次測量中得到的A樣本數(shù)據(jù)如下:82,84,84,86,86,86,88,88,88,88,若樣本B數(shù)據(jù)恰好是樣本A數(shù)據(jù)都加上2后所得數(shù)據(jù),則A,B兩樣本的下列數(shù)字特征對應(yīng)相同的是( )
A. 眾數(shù) B. 平均數(shù)
C. 中位數(shù) D. 標(biāo)準(zhǔn)差
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的最小值;
(2)若函數(shù)的最小值為,令,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題:直線與圓有兩個交點;命題:.
(1)若為真命題,求實數(shù)的取值范圍;
(2)若為真命題,為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一對父子參加一個親子摸獎游戲,其規(guī)則如下:父親在裝有紅色、白色球各兩個的甲袋子里隨機取兩個球,兒子在裝有紅色、白色、黑色球各一個的乙袋子里隨機取一個球,父子倆取球互相獨立,兩人各摸球一次合在一起稱為一次摸獎,他們?nèi)〕龅娜齻球的顏色情況與他們獲得的積分對應(yīng)如下表:
所取球的情況 | 三個球均為紅色 | 三個球均為不同色 | 恰有兩球為紅色 | 其他情況 |
所獲得的積分 | 180 | 90 | 60 | 0 |
(1)求一次摸獎中,所取的三個球中恰有兩個是紅球的概率;
(2)設(shè)一次摸獎中,他們所獲得的積分為,求的分布列及均值(數(shù)學(xué)期望);
(3)按照以上規(guī)則重復(fù)摸獎三次,求至少有兩次獲得積分為60的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com