已知點(diǎn)F1、F2分別是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點(diǎn),過F1垂直于x軸的直線與雙曲線交于A、B兩點(diǎn),若△ABF2為銳角三角形,則雙曲線的離心率e的取值范圍是
 
分析:先求出A,B兩點(diǎn)的縱坐標(biāo),由△ABF2是銳角三角形知,tan∠AF2F1=
b2
a
2c
<1,e2-2e-1<0,解不等式求出e 的范圍.
解答:解:在雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
中,
令x=-c 得,y=±
b2
a
,∴A,B兩點(diǎn)的縱坐標(biāo)分別為±
b2
a

由△ABF2是銳角三角形知,∠AF2F1
π
4
,tan∠AF2F1=
b2
a
2c
<tan
π
4
=1,
c2-a2
2ac
<1,c2-2ac-a2<0,e2-2e-1<0,∴1-
2
<e<1+
2

又 e>1,∴1<e<1+
2
,
故答案為:(1,1+
2
).
點(diǎn)評(píng):本題考查雙曲線的標(biāo)準(zhǔn)方程,以及雙曲線的簡單性質(zhì)的應(yīng)用,判斷∠AF2F1
π
4
,tan
π
4
=
b2
a
2c
<1,是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•聊城一模)已知點(diǎn)F1,F(xiàn)2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦點(diǎn),P是橢圓C上的一點(diǎn),且|F1F2|=2,∠F1PF2=
π
3
,△F1PF2
的面積為
3
3

(Ⅰ)求橢圓C的方程;
(Ⅱ)點(diǎn)M的坐標(biāo)為(
5
4
,0)
,過點(diǎn)F2且斜率為k的直線l與橢圓C相交于A,B兩點(diǎn),對(duì)于任意的k∈R,
MA
MB
是否為定值?若是求出這個(gè)定值;若不是說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•青州市模擬)已知點(diǎn)F1,F(xiàn)2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn),點(diǎn)P為橢圓上任意一點(diǎn),P到焦點(diǎn)F2的距離的最大值為
2
+1
,且△PF1F2的最大面積為1.
( I)求橢圓C的方程.
( II)點(diǎn)M的坐標(biāo)為(
5
4
,0)
,過點(diǎn)F2且斜率為k的直線L與橢圓C相交于A,B兩點(diǎn).對(duì)于任意的k∈R,
MA
MB
是否為定值?若是求出這個(gè)定值;若不是說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)F1,F(xiàn)2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn),點(diǎn)P為橢圓上任意一點(diǎn),P到焦點(diǎn)F2(1,0)的距離的最大值為
2
+1.
(1)求橢圓C的方程.
(2)點(diǎn)M的坐標(biāo)為(
5
4
,0),過點(diǎn)F2且斜率為k的直線l與橢圓C相交于A,B兩點(diǎn).對(duì)于任意的k∈R,
MA
MB
是否為定值?若是求出這個(gè)定值;若不是說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:山東省期中題 題型:解答題

已知點(diǎn)F1,F(xiàn)2分別為橢圓C:(a>b>0)的左、右焦點(diǎn),點(diǎn)P為橢圓上任意一點(diǎn),P到焦點(diǎn)F2的距離的最大值為+1,且△PF1F2的最大面積為1。
(1)求橢圓C的方程。
(2)點(diǎn)M的坐標(biāo)為,過點(diǎn)F2且斜率為k的直線L與橢圓C相交于A,B兩點(diǎn)。對(duì)于任意的k∈R,是否為定值?若是求出這個(gè)定值;若不是說明理由。 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省青島十九中高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知點(diǎn)F1,F(xiàn)2分別為橢圓C:的左右焦點(diǎn),P是橢圓C上的一點(diǎn),且的面積為
(Ⅰ)求橢圓C的方程;
(Ⅱ)點(diǎn)M的坐標(biāo)為,過點(diǎn)F2且斜率為k的直線l與橢圓C相交于A,B兩點(diǎn),對(duì)于任意的是否為定值?若是求出這個(gè)定值;若不是說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案