【題目】已知函數(shù)f(x)=ax2+bx在x=1處取得極值2.
(1)求f(x)的解析式;
(2)若(m+3)x﹣x2ex+2x2≤f(x)對于任意的x∈(0,+∞)成立,求實數(shù)m的取值范圍.

【答案】
(1)解:∵函數(shù)f(x)=ax3+bx在x=1處取得極值2,

,解得

∴f(x)=﹣x3+3x


(2)解:∵(m+3)x﹣x2ex+2x2≤f(x)對于任意的x∈(0,+∞)成立,

∴(m+3)x﹣x2ex+2x2≤﹣x3+3x

m≤xex﹣x2﹣2x于任意的x∈(0,+∞)成立

設h(x)=xex﹣x2﹣2x,

則h′(x)=ex+xex﹣2x﹣2=(x+1)(ex﹣2),

令h′(x)=0解得x=ln2,

且當0<x<ln2時,h′(x)<0;

當x>ln2時,h′(x)>0,

∴h(x)=xex﹣x2﹣2x在(0,ln2)上單調(diào)遞減,在(ln2,+∞)上單調(diào)遞增,

,

∴m≤﹣(ln2)2


【解析】(1)根據(jù)極值的定義得到關(guān)于a,b的方程組,求出a,b的值,從而求出f(x)的表達式;(2)問題等價于m≤xex﹣x2﹣2x于任意的x∈(0,+∞)成立,設h(x)=xex﹣x2﹣2x,根據(jù)函數(shù)的單調(diào)性求出m的范圍即可.
【考點精析】利用基本求導法則和函數(shù)的極值與導數(shù)對題目進行判斷即可得到答案,需要熟知若兩個函數(shù)可導,則它們和、差、積、商必可導;若兩個函數(shù)均不可導,則它們的和、差、積、商不一定不可導;求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】三棱錐P﹣ABC,底面ABC為邊長為2 的正三角形,平面PBC⊥平面ABC,PB=PC=2,D為AP上一點,AD=2DP,O為底面三角形中心.

(1)求證DO∥面PBC;
(2)求證:BD⊥AC;
(3)設M為PC中點,求平面MBD和平面BDO所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某同學在利用“五點法”作函數(shù)f(x)=Asin(ωx+)+t(其中A>0, )的圖象時,列出了如表格中的部分數(shù)據(jù).

x

ωx+

0

π

f(x)

2

6

2

﹣2

2


(1)請將表格補充完整,并寫出f(x)的解析式.
(2)若 ,求f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=f(x)是R上的偶函數(shù),且當x≤0時,f(x)=log (1﹣x)+x.
(1)求f(1)的值;
(2)求函數(shù)y=f(x)的表達式,并直接寫出其單調(diào)區(qū)間(不需要證明);
(3)若f(lga)+2<0,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的函數(shù)f(x)的圖象關(guān)于點(﹣ ,0)成中心對稱,且對任意的實數(shù)x都有 ,f(﹣1)=1,f(0)=﹣2,則f(1)+f(2)++f(2 017)=(
A.0
B.﹣2
C.1
D.﹣4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點P(0,2)和圓C:x2+y2﹣8x+11=0.
(1)求過點P,點C和原點三點圓的方程;
(2)求以點P為圓心且與圓C外切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知y=f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=x+x2
(1)求x<0時,f(x)的解析式;
(2)問是否存在這樣的非負數(shù)a,b,當x∈[a,b]時,f(x)的值域為[4a﹣2,6b﹣6]?若存在,求出所有的a,b值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a、b、c分別是△ABC的三個內(nèi)角A、B、C的對邊.
(1)若△ABC面積SABC= ,c=2,A=60°,求a、b的值;
(2)若a=ccosB,且b=csinA,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】東莞某家具生產(chǎn)廠家根據(jù)市場調(diào)查分析,決定調(diào)整新產(chǎn)品生產(chǎn)方案,準備每周(按40個工時計算)生產(chǎn)書桌、書柜、電腦椅共120張,且書桌至少生產(chǎn)20張.已知生產(chǎn)這些家具每張所需工時和每張產(chǎn)值如表:

家具名稱

書桌

書柜

電腦椅

產(chǎn)值(千元)

4

3

2

問每周應生產(chǎn)書桌、書柜、電腦椅各多少張,才能使產(chǎn)值最高?最高產(chǎn)值是多少?(以千元為單位)

查看答案和解析>>

同步練習冊答案