【題目】判斷下列命題的真假:
(1)存在一個(gè)函數(shù),既是偶函數(shù)又是奇函數(shù);
(2)每一條線(xiàn)段的長(zhǎng)度都能用正有理數(shù)來(lái)表示;
(3)存在一個(gè)實(shí)數(shù)x0,使得等式 成立;
(4)x∈R,x2-3x+2=0;
(5)x0∈R, .
【答案】
(1)
【解答】真命題,如函數(shù)f(x)=0,既是偶函數(shù)又是奇函數(shù).
(2)
【解答】假命題,如邊長(zhǎng)為1的正方形,對(duì)角線(xiàn)長(zhǎng)度為 ,就不能用正有理數(shù)表示.
(3)
【解答】假命題,方程x2+x+8=0的判別式Δ=-31<0,故方程無(wú)實(shí)數(shù)解.
(4)
【解答】假命題,只有當(dāng)x=2或x=1時(shí),等式x2-3x+2=0才成立.
(5)
【解答】真命題,x0=2或x0=1,都使得等式成立.
【解析】判斷一個(gè)全稱(chēng)命題為假命題,只需舉一反例即可;判斷一個(gè)特稱(chēng)命題為真命題,只需舉一例即可;在判斷全稱(chēng)命題為真命題或者判斷特稱(chēng)命題為假命題時(shí),我們需要嚴(yán)格的證明.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用全稱(chēng)命題的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握全稱(chēng)命題:,,它的否定:,;全稱(chēng)命題的否定是特稱(chēng)命題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】當(dāng)n=1,2,3,4,5,6 時(shí),比較 2n 和 n2 的大小并猜想,則下列猜想中一定正確的是( )
A.時(shí),n2>2n
B. 時(shí), n2>2n
C. 時(shí), 2n>n2
D. 時(shí), 2n>n2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)市場(chǎng)調(diào)查,某種商品一年內(nèi)每件出廠(chǎng)價(jià)在7千元的基礎(chǔ)上,按月呈f(x)=Asin(ωx+)+b (A>0,ω>0,| |<)的模型波動(dòng)(x為月份),已知3月份達(dá)到最高價(jià)9千元,7月份價(jià)格最低為5千元,根據(jù)以上條件可確定f(x)的解析式為
A. f(x)=2sin(x-)+7 (1≤x≤12,x∈N+)
B. f(x)=9sin(x-) (1≤x≤12,x∈N+)
C. f(x)=2sinx+7 (1≤x≤12,x∈N+)
D. f(x)=2sin(x+)+7 (1≤x≤2,x∈N+)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)k∈R,對(duì)任意的向量 , 和實(shí)數(shù)x∈[0,1],如果滿(mǎn)足 ,則有 成立,那么實(shí)數(shù)λ的最小值為( )
A.1
B.k
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】心理學(xué)家發(fā)現(xiàn)視覺(jué)和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證這個(gè)結(jié)論,從興趣小組中按分層抽樣的方法抽取50名同學(xué)(男30女20),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進(jìn)行解答.選題情況如下表:(單位:人)
(1)能否據(jù)此判斷有97.5%的把握認(rèn)為視覺(jué)和空間能力與性別有關(guān)?
(2)經(jīng)過(guò)多次測(cè)試后,女生甲每次解答一道幾何題所用的時(shí)間在5~7分鐘,女生乙每次解答一道幾何題所用的時(shí)間在6~8分鐘,現(xiàn)甲、乙各解同一道幾何題,求乙比甲先解答完的概率.
附表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列函數(shù)中,值域?yàn)閇1,+∞)的是( )
A.y=2x+1
B.y=
C.y= +1
D.y=x+
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)a,b∈R,記max{a,b}= ,則函數(shù)f(x)=max{|x+1|,x+2}(x∈R)的最小值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若在上存在零點(diǎn),求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí), 若對(duì)任意的,總存在使成立, 求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)關(guān)于x的一元二次方程x2+2ax+b2=0.
(1)若a是從0,1,2,3四個(gè)數(shù)中任取的一個(gè)數(shù),b是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.
(2)若a是從區(qū)間[0,3]任取的一個(gè)數(shù),b是從區(qū)間[0,2]任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com