【題目】已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且an2+2an=4Sn﹣1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn,數(shù)列{bn}的前n項(xiàng)和為Tn,求Tn的取值范圍.
【答案】(1)an=2n﹣1,n∈N*;(2)[,).
【解析】
(1)題先利用公式進(jìn)行轉(zhuǎn)化計(jì)算可發(fā)現(xiàn)數(shù)列{an}是以1為首項(xiàng),2為公差的等差數(shù)列,即可計(jì)算出數(shù)列{an}的通項(xiàng)公式;
(2)題先根據(jù)第(1)題的結(jié)果計(jì)算出Sn的表達(dá)式,以及數(shù)列{bn}的通項(xiàng)公式,然后運(yùn)用裂項(xiàng)相消法計(jì)算出前n項(xiàng)和Tn,最后運(yùn)用放縮法即可計(jì)算得到Tn的取值范圍.
(1)由題意,當(dāng)n=1時(shí),a12+2a1=4S1﹣1=4a1﹣1,
整理,得a12﹣2a1+1=0,
解得a1=1.
當(dāng)n≥2時(shí),由an2+2an=4Sn﹣1,
可得,
兩式相減,
可得,
即an2﹣an﹣12=2an+2an﹣1,
∴(an+an﹣1)(an﹣an﹣1)=2(an+an﹣1),
∵an+an﹣1>0,
∴an﹣an﹣1=2,
∴數(shù)列{an}是以1為首項(xiàng),2為公差的等差數(shù)列.
∴an=1+2(n﹣1)=2n﹣1,n∈N*.
(2)由(1)知,Sn=n2=n2,
則bn
[],
∴Tn=b1+b2+…+bn
(1)()[]
[1]
[1],
又∵an>0,n∈N*,∴bn>0,
∴Tn≥T1=b1(1),
∴Tn.
∴Tn的取值范圍為[,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若對(duì)任意的,都有成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),其中為常數(shù).
(1)求的值;
(2)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍;
(3)若關(guān)于的方程在上有解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn),對(duì)稱(chēng)軸為x軸,拋物線C過(guò)點(diǎn)A(4,4),過(guò)拋物線C的焦點(diǎn)F作傾斜角等于45°的直線l,直線l交拋物線C于M、N兩點(diǎn).
(1)求拋物線C的方程;
(2)求線段MN的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是復(fù)平面內(nèi)的平行四邊形,頂點(diǎn),,對(duì)應(yīng)的復(fù)數(shù)分別為,,.
(1)求點(diǎn)對(duì)應(yīng)的復(fù)數(shù)為;
(2)令復(fù)數(shù),當(dāng)實(shí)數(shù)取什么值時(shí),復(fù)數(shù)表示的點(diǎn)位于第二或四象限.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】自2017年起,部分省、市陸續(xù)實(shí)施了新高考,某省采用了“”的選科模式,即:考試除必考的語(yǔ)、數(shù)、外三科外,再?gòu)奈锢怼⒒瘜W(xué)、生物、歷史、地理、政治六個(gè)學(xué)科中,任意選取三科參加高考,為了調(diào)查新高考中考生的選科情況,某地區(qū)調(diào)查小組進(jìn)行了一次調(diào)查,研究考生選擇化學(xué)與選擇物理是否有關(guān).已知在調(diào)查數(shù)據(jù)中,選物理的考生與不選物理的考生人數(shù)相同,其中選物理且選化學(xué)的人數(shù)占選物理人數(shù)的,在不選物理的考生中,選化學(xué)與不選化學(xué)的人數(shù)比為.
(1)若在此次調(diào)查中,選物理未選化學(xué)的考生有100人,試完成下面的列聯(lián)表:
選化學(xué) | 不選化學(xué) | 合計(jì)(人數(shù)) | |
選物理 | |||
不選物理 | |||
合計(jì)(人數(shù)) |
(2)根據(jù)第(1)問(wèn)的數(shù)據(jù),能否有99%把握認(rèn)為選擇化學(xué)與選擇物理有關(guān)?
(3)若研究得到在犯錯(cuò)誤概率不超過(guò)0.01的前提下,認(rèn)為選化學(xué)與選物理有關(guān),則選物理又選化學(xué)的人數(shù)至少有多少?(單位:千人;精確到0.001)
附:.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】自從高中生通過(guò)高校自主招生可獲得加分進(jìn)入高校的政策出臺(tái)后,自主招生越來(lái)越受到高中生家長(zhǎng)的重視.某機(jī)構(gòu)為了調(diào)查城市和城市的高中家長(zhǎng)對(duì)于自主招生的關(guān)注程度,在這兩個(gè)城市中抽取了名高中生家長(zhǎng)進(jìn)行了調(diào)查,得到下表:
關(guān)注 | 不關(guān)注 | 合計(jì) | |
城高中家長(zhǎng) | 20 | 50 | |
城高中家長(zhǎng) | 20 | ||
合計(jì) | 100 |
(1)完成上面的列聯(lián)表;
(2)根據(jù)上面列聯(lián)表的數(shù)據(jù),是否有的把握認(rèn)為家長(zhǎng)對(duì)自主招生關(guān)注與否與所處城市有關(guān);
(3)為了進(jìn)一步研究家長(zhǎng)對(duì)自主招生的直法,該機(jī)構(gòu)從關(guān)注的學(xué)生家長(zhǎng)里面,按照分層抽樣方法抽取了人,并再?gòu)倪@人里面抽取人進(jìn)行采訪,求所抽取的人恰好兩城市各一人的概率.
附:(其中).
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)若,是的兩個(gè)零點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓左右焦點(diǎn)分別為,,
若橢圓上的點(diǎn)到,的距離之和為,求橢圓的方程和焦點(diǎn)的坐標(biāo);
若、是關(guān)于對(duì)稱(chēng)的兩點(diǎn),是上任意一點(diǎn),直線,的斜率都存在,記為,,求證:與之積為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com