A. | (-2,0)∪(2,+∞) | B. | (-∞,-2)∪(0,2) | C. | (-∞,-2)∪(2,+∞) | D. | (-2,0)∪(0,2) |
分析 易判斷f(x)在(-∞,0)上的單調性及f(x)圖象所過特殊點,作出f(x)的草圖,根據圖象可解不等式.
解答 解:∵f(x)在R上是奇函數,且f(x)在(-∞,0)上遞減,
∴f(x)在(0,+∞)上遞減,
由f(-2)=0,得f(-2)=-f(2)=0,
即f(2)=0,
由f(-0)=-f(0),得f(0)=0,
作出f(x)的草圖,如圖所示:
由圖象,得xf(x)>0?$\left\{\begin{array}{l}{x<0}\\{f(x)<0}\end{array}\right.$或$\left\{\begin{array}{l}{x>0}\\{f(x)>0}\end{array}\right.$,
解得-2<x<0或0<x<2,
∴xf(x)>0的解集為(-2,0)∪(0,2),
故選D.
點評 本題考查函數奇偶性、單調性的綜合應用,考查數形結合思想,靈活作出函數的草圖是解題關鍵.
科目:高中數學 來源: 題型:選擇題
A. | {2,4,6,8,9} | B. | {2,4,6,8,9,10} | C. | {1,2,6,8,9,10} | D. | {4,6,8,10} |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 命題“若x2-5x+6=0,則x=2”的逆否命題是“若x≠2,則x2-5x+6≠0” | |
B. | 命題“角α的終邊在第一象限,則α是銳角”的逆命題為真命題 | |
C. | 已知命題p和q,若p∨q為假命題,則命題p與q中必一真一假 | |
D. | 命題“若x>y,則x>|y|”的逆命題是真命題 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com