【題目】執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是 .
【答案】12
【解析】解:模擬程序的運(yùn)行,可得 i=0,a=1
滿足條件i<6,執(zhí)行循環(huán)體,a=2,i=1
滿足條件i<6,執(zhí)行循環(huán)體,a=4,i=2
滿足條件i<6,執(zhí)行循環(huán)體,a=8,i=3
滿足條件i<6,執(zhí)行循環(huán)體,a=16,i=4
滿足條件i<6,執(zhí)行循環(huán)體,a=32,i=5
滿足條件i<6,執(zhí)行循環(huán)體,a=64,i=6
不滿足條件i<6,b=6+log264=12,
輸出b的值為12.
所以答案是:12.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用程序框圖的相關(guān)知識(shí)可以得到問題的答案,需要掌握程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在實(shí)數(shù)集R上的函數(shù)f(x)滿足f(x+1)= + ,則f(0)+f(2017)的最大值為( )
A.1﹣
B.1+
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解人們對(duì)于國家新頒布的“生育二孩放開”政策的熱度,現(xiàn)在對(duì)某市年齡在35歲的人調(diào)查,隨機(jī)選取年齡在35歲的100人進(jìn)行調(diào)查,得到他們的情況為:在55名男性中,支持生二孩的有40人,不支持生二孩的有15人;在45名女性中,支持生二孩的有20人,不支持的有25人.
(Ⅰ)完成下面2×2列聯(lián)表,并判斷有多大的把握認(rèn)為“支持生二孩與性別有關(guān)”?
支持生二孩 | 不支持生二孩 | 合計(jì) | |
男性 | |||
女性 | |||
合計(jì) |
附:K2= ,其中n=a+b+c+d
P(K2≥k0) | 0.150 | 0.100 | 0.050 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(Ⅱ)在被調(diào)查的人員中,按分層抽樣的方法從支持生二孩的人中抽取6人,再用簡單隨機(jī)抽樣的方法從這6人中隨機(jī)抽取2人,求這2人中恰好有1名男性的概率;
(Ⅲ)以上述樣本數(shù)據(jù)估計(jì)總體,從年齡在35歲人中隨機(jī)抽取3人,記這3人中支持生二孩且為男性的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義1:若函數(shù)f(x)在區(qū)間D上可導(dǎo),即f′(x)存在,且導(dǎo)函數(shù)f′(x)在區(qū)間D上也可導(dǎo),則稱函數(shù)f(x)在區(qū)間D上的存在二階導(dǎo)數(shù),記作f″(x)=[f′(x)]′. 定義2:若函數(shù)f(x)在區(qū)間D上的二階導(dǎo)數(shù)恒為正,即f″(x)>0恒成立,則稱函數(shù)f(x)在區(qū)間D上為凹函數(shù).已知函數(shù)f(x)=x3﹣ x2+1在區(qū)間D上為凹函數(shù),則x的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題為真命題的是( )
A.若 x>y>0,則 ln x+ln y>0
B.“φ= ”是“函數(shù) y=sin(2x+φ) 為偶函數(shù)”的充要條件
C.?x0∈(﹣∞,0),使 3x0<4x0成立
D.已知兩個(gè)平面α,β,若兩條異面直線m,n滿足m?α,n?β且 m∥β,n∥α,則α∥β
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD 中,∠ABC=∠BAD=90°,BC=2AD,△PAB與△PAD 都是邊長為2的等邊三角形,E 是BC的中點(diǎn).
(Ⅰ)證明:平面AE∥平面 PCD;
(Ⅱ)求PAB與平面 PCD 所成二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中(如圖①),AB∥CD,AB⊥BC,G為AD上一點(diǎn),且AB=AG=1,GD=CD=2,M為GC的中點(diǎn),點(diǎn)P為邊BC上的點(diǎn),且滿足BP=2PC.現(xiàn)沿GC折疊使平面GCD⊥平面ABCG(如圖②).
(1)求證:平面BGD⊥平面GCD:
(2)求直線PM與平面BGD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= sin2x﹣2cos2x﹣1,x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期和最小值;
(Ⅱ)在△ABC中,A,B,C的對(duì)邊分別為a,b,c,已知c= ,f(C)=0,sinB=2sinA,求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣m|(m>0),g(x)=2f(x)﹣f(x+m),g(x)的最小值為﹣1. (Ⅰ)求m的值;
(Ⅱ)若|a|<m,|b|<m,且a≠0.求證:f(ab)>|a|f( ).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com