已知函數(shù)f(x)=
2
x
+xln x,則曲線y=f(x)在x=1處的切線方程為
 
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義,求切線方程,
解答: 解:函數(shù)的導(dǎo)數(shù)為f′(x)=1+lnx-
2
x2

∴f'(1)=1-2=-1,
f(1)=2,即切點(diǎn)坐標(biāo)為(-1,2),
∴切線方程為y-2=-(x-1),
即x+y-3=0
故答案為:x+y-3=0
點(diǎn)評(píng):本題主要考查導(dǎo)數(shù)幾何意義,以及導(dǎo)數(shù)的基本運(yùn)算.比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列{an}的各項(xiàng)均為正數(shù),且a4a6=9,則log3a1+log3a2+…+log3a9
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知非零向量
OA
,
OB
不共線,且
BM
=
1
3
BA
,則向量
OM
=( 。
A、
1
3
AO
-
2
3
OB
B、
2
3
AO
+
1
3
OB
C、
1
3
AO
+
2
3
OB
D、
1
3
AO
-
4
3
OB

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(-2,0),B(2,0),點(diǎn)P在圓(x-3)2+(y-4)2=r2(r>0)上,滿足PA2+PB2=40,若這樣的點(diǎn)P有兩個(gè),則r的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=sinxcos(x+
π
3
)+
3
4
,x∈R.
(Ⅰ)求f(x)的最大值及最小正周期;
(Ⅱ)若斜率為
1
2
的直線與f(x)相切,求其切點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-8lnx,g(x)=-x2+14x.
(1)求函數(shù)f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若方程f(x)=g(x)+m有唯一解,試求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列1,2
1
2
,3
1
4
,4
1
8
,5
1
16
,6
1
32
,…的前10項(xiàng)之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在區(qū)間[-2,3]上隨機(jī)選取一個(gè)數(shù)X,則X≥1的概率等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=asinx+btanx+3(a,b∈R),且f(1)=1,則f(-1)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案