已知函數(shù),則方程)的根的個(gè)數(shù)不可能為( ) 

6      5      4      3

 

【答案】

A

【解析】

試題分析:先畫出函數(shù)f(t)的圖象,得出f(t)=a的實(shí)數(shù)根的情況;再利用換元法,令t=2x2+x,進(jìn)一步考查f(2x2+x)=a根的情況即可解:(1)畫出f(x)圖象,

當(dāng)x>0時(shí),f(x)=x+ ≥2,當(dāng)x≤0時(shí),f(x)=x3+3≤3.于是可得:①當(dāng)2<a<3時(shí),f(x)=a有3個(gè)根,一負(fù)二正;②當(dāng)a=3時(shí),f(x)=a有3個(gè)根,一零二正;③當(dāng)3<a時(shí),f(x)=a有2個(gè)正根;④當(dāng)a=2時(shí),f(x)=a有一正一負(fù)根;⑤當(dāng)a<2時(shí),f(x)=a只有一負(fù)根.(2)令t=2x2+x=2(x+ )2-

,則t≥-,①當(dāng)2<a<3時(shí),f(t)=a有3個(gè)t使之成立,一負(fù)二正,兩個(gè)正t分別對(duì)應(yīng)2個(gè)x,當(dāng)t<-時(shí),沒有x與之對(duì)應(yīng),當(dāng)t=-時(shí),有1個(gè)x與之對(duì)應(yīng),當(dāng)t>-時(shí),有2個(gè)x與之對(duì)應(yīng),∴根的個(gè)數(shù)分別為4、5、6個(gè);②當(dāng)3<a時(shí),f(t)=a有2個(gè)正根,兩個(gè)正t分別對(duì)應(yīng)2個(gè)x,此時(shí)根的個(gè)數(shù)為4個(gè).③由題目不必考慮a≤2的情形.所以根的個(gè)數(shù)只可能為4、5、6個(gè).即方程f(2x2+x)=a的根的個(gè)數(shù)只可能為4、5、6個(gè),不可能為3個(gè).故選A.

考點(diǎn):函數(shù)圖象

點(diǎn)評(píng):正確得出函數(shù)的單調(diào)性并畫出函數(shù)圖象、利用換元法及分類討論的方法是解題的關(guān)鍵.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù),則方程f -1 (x)=4的解x=     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年河北省石家莊高三上學(xué)期調(diào)研考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

已知函數(shù),則方程恰有兩個(gè)不同實(shí)數(shù)根時(shí),實(shí)數(shù)的取值范圍是(   )(注:為自然對(duì)數(shù)的底數(shù))

A.   B.   C.   D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年河北省石家莊高三上學(xué)期調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知函數(shù),則方程恰有兩個(gè)不同實(shí)數(shù)根時(shí),實(shí)數(shù)的取值范圍是(   )(注:為自然對(duì)數(shù)的底數(shù))

A.   B.   C.   D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省濟(jì)寧市高三第二次月考文科數(shù)學(xué) 題型:選擇題

已知函數(shù),則方程為正實(shí)數(shù))的根的個(gè)數(shù)不可能為(    )

(A)3個(gè)        (B)4個(gè)            (C)5個(gè)        (D)6個(gè)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆上海市高一上學(xué)期期末考試數(shù)學(xué) 題型:填空題

已知函數(shù),則方程的解____.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案