A. | $(6,6\sqrt{2})$或$(6,-6\sqrt{2})$ | B. | $(4,4\sqrt{3})$或$(4,-4\sqrt{3})$ | C. | (3,6)或(3,-6) | D. | $(9,6\sqrt{3})$或$(9,-6\sqrt{3})$ |
分析 求出拋物線焦點為F(3,0),準線方程為x=-3.設所求點為P(m,n),根據題意利用拋物線的定義建立關于m的等式,解出m的值后利用拋物線的方程求出n的值,即可得到滿足條件的點P的坐標.
解答 解:∵拋物線方程為y2=12x,
∴拋物線的焦點為F(3,0),準線方程為x=-3.
設所求點為P(m,n),
∵P到焦點F的距離為9,P到準線的距離為m+3,
∴根據拋物線的定義,得m+3=9,解得m=6,
將點P(6,n)代入拋物線方程,得n2=12×6=72,解之得n=$±6\sqrt{2}$,
∴滿足條件的點的坐標為(6,$±6\sqrt{2}$).
故選A.
點評 本題求拋物線上滿足指定條件的點P的坐標,著重考查了拋物線的定義與標準方程等知識,屬于基礎題.
科目:高中數學 來源: 題型:選擇題
A. | (-1,2) | B. | [-1,+∞) | C. | (-∞,2] | D. | [-1,2] |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\sqrt{2}$ | C. | $\frac{{\sqrt{6}+\sqrt{2}}}{4}$ | D. | 1 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 若K2的觀測值為k=6.635,我們有99%的把握認為吸煙與患肺病有關系,那么在100個吸煙的人中必有99人患有肺病 | |
B. | 若從統(tǒng)計量中求出有95%的把握認為吸煙與患肺病有關系,是指有5%的可能性使得推斷出現錯誤 | |
C. | 從獨立性檢驗可知有99%的把握認為吸煙與患肺病有關系時,我們說某人吸煙,那么他有99%的可能患有肺病 | |
D. | 以上三種說法都不正確 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [$-\frac{\sqrt{6}}{3}$,$\frac{\sqrt{6}}{3}$] | B. | [$-\frac{\sqrt{6}}{6}$,$\frac{2\sqrt{6}}{3}$] | C. | [$-\frac{\sqrt{6}}{3}$,$\frac{\sqrt{3}}{3}$] | D. | [$-\frac{2\sqrt{6}}{3}$,$\frac{2\sqrt{6}}{3}$] |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{x}{1+{x}^{2}}$ | B. | -$\frac{2x}{1+{x}^{2}}$ | C. | $\frac{2x}{1+{x}^{2}}$ | D. | -$\frac{x}{1+{x}^{2}}$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com