12.對(duì)于任意實(shí)數(shù)x,符號(hào)[x]表示不超過(guò)x的最大整數(shù),如[2.2]=2,[-3.5]=-4,設(shè)數(shù)列{an}的通項(xiàng)公式為an=[log21]+[log22]+[log23]+…[log2(2n-1)].
(Ⅰ)求a1•a2•a3的值;
(Ⅱ)是否存在實(shí)數(shù)a,使得an=(n-2)•2n+a(n∈N*),并說(shuō)明理由.

分析 (1)計(jì)算a1=0,故a1•a2•a3=0;
(2)根據(jù)對(duì)數(shù)性質(zhì)得出an=1•0+2•1+22•2+23•3+…+2n-1•(n-1),使用錯(cuò)位相減法求出an,得出a的值.

解答 解:(I)a1=[log21]=0,a2=[log21]+[log22]+[log23]=0+1+1=2,
a3=[log21]+[log22]+[log23]+…+[log27]=0+1+1+2+2+2+2=10.
∴a1•a2•a3=0.
(II)當(dāng)2n-1≤x≤2n-1時(shí),[log2x]=n-1.
∴[log22n-1]+[log22n-1+1]+[log22n-1+2]+…+[log2(2n-1)]=(n-1)(2n-1-2n-1+1)=2n-1(n-1).
∴an=1•0+2•1+22•2+23•3+…+2n-1•(n-1),①
∴2an=22•1+23•2+24•3+…+2n•(n-1),②
②-①得:an=-22-23-24-…-2n-1+2n•(n-1)-2
=-$\frac{{2}^{2}(1-{2}^{n-2})}{1-2}$+2n•(n-1)-2
=2n•(n-2)+2.
又an=(n-2)•2n+a,
∴a=2.

點(diǎn)評(píng) 本題考查了對(duì)數(shù)的運(yùn)算性質(zhì),數(shù)列求和的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,在四棱錐P-ABCD中,底面ABCD是∠DAB=60°且邊長(zhǎng)為a的菱形,側(cè)面PAD是等邊三角形,且平面PAD⊥底面ABCD,G為AD的中點(diǎn).
(1)求證:BG⊥PD;
(2)求 點(diǎn)G到平面PAB的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下列不等式中成立的是(  )
A.sin3>sin2B.cos3>cos2C.cos(-$\frac{2}{5}$π)<cos(-$\frac{1}{4}$π)D.sin$\frac{12}{5}$π<sin$\frac{17}{4}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}y≤x+1\\ x+y≤2\\ 0≤x≤\frac{3}{2}\\ y≥0\end{array}\right.$,則z=2x+y的最大值是$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在平面直角坐標(biāo)系中,已知$\overrightarrow{OA}$=(-2,p),$\overrightarrow{OB}$=(3,3),若∠AOB=90°,則實(shí)數(shù)p的值為( 。
A.7B.8C.2D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.某集團(tuán)公司為了獲得更大的收益,決定以后每年投入一筆資金用于廣告促銷.經(jīng)過(guò)市場(chǎng)調(diào)查,每年投入廣告費(fèi)t百萬(wàn)元,可增加銷售額約(2t+$\frac{5}{t+2}$-$\frac{5}{2}$)百萬(wàn)元(t≥0).
(1)若公司當(dāng)年新增收益不少于1.5百萬(wàn)元,求每年投放廣告費(fèi)至少多少百萬(wàn)元?
(2)現(xiàn)公司準(zhǔn)備投入6百萬(wàn)元分別用于當(dāng)年廣告費(fèi)和新產(chǎn)品開(kāi)發(fā),經(jīng)預(yù)測(cè),每投入新產(chǎn)品開(kāi)發(fā)費(fèi)x百萬(wàn)元,可增加銷售額約($\frac{21}{x-8}$+3x+$\frac{21}{8}$)百萬(wàn)元,問(wèn)如何分配這筆資金,使該公司獲得新增收益最大?(新增收益=新增銷售額-投入)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知數(shù)據(jù)x1,x2,x3,…,xn是廣州市n(n≥3,n∈N*)個(gè)普通職工的2015年的年收入,設(shè)這n個(gè)數(shù)據(jù)的中位數(shù)為x,平均數(shù)為y,方差為z,如果再加上比爾.蓋茨的2015年的年收入xn+1(約80億美元),則這n+1個(gè)數(shù)據(jù)中,下列說(shuō)法正確的是( 。
A.y大大增大,x一定變大,z可能不變B.y大大增大,x可能不變,z變大
C.y大大增大,x可能不變,z也不變D.y可能不變,x可能不變,z可能不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知橢圓$\frac{{y}^{2}}{{a}^{2}}$+x2=1(a>0)的焦點(diǎn)在y軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的兩倍,則a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知m∈R,i為虛數(shù)單位,且(m+2i)2=-3+4i.
(1)求實(shí)數(shù)m的值;
(2)若|z-1|=|m+2i|,求復(fù)數(shù)z在復(fù)平面上所對(duì)應(yīng)的點(diǎn)P的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案