【題目】在平面直角坐標(biāo)系xOy中,橢圓C的參數(shù)方程為 (θ為參數(shù)),直線l的參數(shù)方程為 (t為參數(shù)).
(Ⅰ)寫出橢圓C的普通方程和直線l的傾斜角;
(Ⅱ)若點(diǎn)P(1,2),設(shè)直線l與橢圓C相交于A,B兩點(diǎn),求|PA|·|PB|的值.

【答案】解:(Ⅰ)消去θ得到橢圓C的普通方程為

∵直線 的斜率為 ,∴直線l的傾斜角為

(Ⅱ)把直線 的方程 ,代入 中,

,

∴t1·t2=4,即|PA|·|PB|=4.


【解析】(Ⅰ)利用sin2θ+cos2θ=1消去θ,從而得到橢圓的普通方程,根據(jù)參數(shù)方程可知直線l定過點(diǎn)(1,2),從而斜率為,即為,從而求得直線l的傾斜角;(Ⅱ)因?yàn)?/span>,所以|PA|·|PB|=t1·t2=4.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用直線的傾斜角和橢圓的標(biāo)準(zhǔn)方程的相關(guān)知識可以得到問題的答案,需要掌握當(dāng)直線l與x軸相交時, 取x軸作為基準(zhǔn), x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角.特別地,當(dāng)直線l與x軸平行或重合時, 規(guī)定α=0°;橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的各項(xiàng)均為正數(shù),滿足a1=1,ak+1﹣ak=ai . (i≤k,k=1,2,3,…,n﹣1)
(1)求證: ;
(2)若{an}是等比數(shù)列,求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足: ,

)求 , 的值.

)求證:數(shù)列是等比數(shù)列.

)令,如果對任意,都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省2016年高中數(shù)學(xué)學(xué)業(yè)水平測試的原始成績采用百分制,發(fā)布成績使用等級制.各等級劃分標(biāo)準(zhǔn)如下:85分及以上,記為A等;分?jǐn)?shù)在[70,85)內(nèi),記為B等;分?jǐn)?shù)在[60,70)內(nèi),記為C等;60分以下,記為D等.同時認(rèn)定A,B,C為合格,D為不合格.已知某學(xué)校學(xué)生的原始成績均分布在[50,100]內(nèi),為了了解該校學(xué)生的成績,抽取了50名學(xué)生的原始成績作為樣本進(jìn)行統(tǒng)計,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出樣本頻率分布直方圖如圖所示.

(Ⅰ)求圖中x的值,并根據(jù)樣本數(shù)據(jù)估計該校學(xué)生學(xué)業(yè)水平測試的合格率;
(Ⅱ)在選取的樣本中,從70分以下的學(xué)生中隨機(jī)抽取3名學(xué)生進(jìn)行調(diào)研,用X表示所抽取的3名學(xué)生中成績?yōu)镈等級的人數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是公差不為零的等差數(shù)列,滿足數(shù)列的通項(xiàng)公式為

1)求數(shù)列的通項(xiàng)公式;

2將數(shù)列,中的公共項(xiàng)按從小到大的順序構(gòu)成數(shù)列請直接寫出數(shù)列的通項(xiàng)公式;

3,是否存在正整數(shù) ,使得成等差數(shù)列?若存在,求出的值;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若點(diǎn)O和點(diǎn)F2(﹣ ,0)分別為雙曲線 =1(a>0)的中心和左焦點(diǎn),點(diǎn)P為雙曲線右支上的任意一點(diǎn),則 的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個多面體的直觀圖、正視圖、側(cè)視圖、俯視圖如圖,M,N分別為A1B,B1C1的中點(diǎn).

下列結(jié)論中正確的個數(shù)有 (  )

①直線MN與A1C相交.

②MN⊥BC.

③MN∥平面ACC1A1.

④三棱錐N-A1BC的體積為=a3.

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,D、E分別是AB、AC的中點(diǎn),M是直線DE上的動點(diǎn).若△ABC的面積為2,則 + 2的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓M軸相切.

(1)的值;

(2)求圓M軸上截得的弦長;

(3)若點(diǎn)是直線上的動點(diǎn),過點(diǎn)作直線與圓M相切,為切點(diǎn),求四邊形面積的最小值.

【答案】(1) (2) (3)

【解析】試題分析:(1)先將圓的一般方程化成標(biāo)準(zhǔn)方程,利用直線和圓相切進(jìn)行求解;(2),得到關(guān)于的一元二次方程進(jìn)行求解;(3)將四邊形的面積的最小值問題轉(zhuǎn)化為點(diǎn)到直線的的距離進(jìn)行求解.

試題解析:(1)   ∵圓M軸相切  

   

(2) ,則  

 

(3)

 的最小值等于點(diǎn)到直線的距離, 

 

∴四邊形面積的最小值為

型】解答
結(jié)束】
20

【題目】在平面直角坐標(biāo)系中,圓的方程為,且圓軸交于, 兩點(diǎn),設(shè)直線的方程為

(1)當(dāng)直線與圓相切時,求直線的方程;

(2)已知直線與圓相交于, 兩點(diǎn).

(。┤,求實(shí)數(shù)的取值范圍;

(ⅱ)直線與直線相交于點(diǎn),直線,直線,直線的斜率分別為 , ,

是否存在常數(shù),使得恒成立?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案