某程序框圖如圖所示,現(xiàn)輸入如下四個函數(shù):f(x)=x2,f(x)=
1
x
,f(x)=ex,f(x)=sinx,則可以輸出的函數(shù)是
 
考點:程序框圖
專題:函數(shù)的性質及應用,算法和程序框圖
分析:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是輸出滿足條件①f(x)+f(-x)=0,即函數(shù)f(x)為奇函數(shù)②f(x)存在零點,即函數(shù)圖象與x軸有交點.逐一分析四個答案中給出的函數(shù)的性質,不難得到正確答案.
解答: 解:由程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:
該程序的作用是輸出滿足條件①f(x)+f(-x)=0,即函數(shù)f(x)為奇函數(shù)
②f(x)存在零點,即函數(shù)圖象與x軸有交點.
∵f(x)=x2,不是奇函數(shù),故不滿足條件①,
∵f(x)=
1
x
的函數(shù)圖象與x軸沒有交點,故不滿足條件②,
∵f(x)=ex為非奇非偶函數(shù),故不滿足條件①,
∵f(x)=sinx既是奇函數(shù),而且函數(shù)圖象與x也有交點,故f(x)=sinx符合輸出的條件,
故答案為:f(x)=sinx
點評:本題考查的知識點是程序框圖,其中根據(jù)程序框圖分析出程序的功能是解答的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

清明節(jié)小長假期間,某公園推出擲飛鏢和摸球兩種游戲,甲參加擲飛鏢游戲,已知甲投擲中紅色靶區(qū)的概率為
1
2
,投中藍色靶區(qū)的概率為
1
4
,不能中靶概率為
1
4
;該游戲規(guī)定,投中紅色靶區(qū)記2分,投中藍色靶區(qū)記1分,未投中標靶記0分;乙參加摸球游戲,該游戲規(guī)定,在一個盒中裝有大小相同的10個球,其中6個紅球和4個黃球,從中一次摸出3個球,一個紅球記1分,黃球不記分.
(Ⅰ)求乙恰得1分的概率;
(Ⅱ)求甲在4次投擲飛鏢中恰有三次投中紅色靶區(qū)的概率;
(Ⅲ)求甲兩次投擲后得分ξ的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)的定義域:
①f(x)=
5
x+2
+x;
②f(x)=
(
1
2
)x+8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
8
x2-4x+5
的值域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過點A(a,0)且與極軸相交成60°角的直線的極坐標方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在極坐標系中,點(-2,
π
6
)到直線ρsinθ=2的距離等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面α內有n個點,且任意三點都不共線,若“這n個點到平面β的距離均相等”是“α∥β”的充要條件,則n的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是R上的偶函數(shù),在[0,+∞)上是減函數(shù),且f(2)=0,則不等式xf(x)<0的解集為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=1+
2a(sinθ-cosθ)
a2+2acosθ+2
(a,θ∈R,a≠0),那么對于任意的a,θ,則此函數(shù)的最大值與最小值之和為
 

查看答案和解析>>

同步練習冊答案