【題目】已知集合,元素成為集合的特征元素,對(duì)于中的元素,定義:.當(dāng)時(shí),若a是集合中的非特征元素,則的概率為___.

【答案】

【解析】

根據(jù)題意,先得到,分別確定中有“個(gè),個(gè)個(gè)個(gè),個(gè),個(gè),個(gè)個(gè),個(gè)”所對(duì)應(yīng)的基本事件個(gè)數(shù),確定所包含的基本事件個(gè)數(shù),基本事件個(gè)數(shù)比即為所求概率.

由題意,當(dāng)時(shí),

,

所以取值只能為;

當(dāng)中有個(gè)時(shí),,此時(shí)共包含個(gè)基本事件;

當(dāng)中有個(gè)時(shí),,此時(shí)共包含個(gè)基本事件;

當(dāng)中有個(gè)時(shí),,此時(shí)共包含個(gè)基本事件;

當(dāng)中有個(gè)時(shí),,此時(shí)共包含個(gè)基本事件;

當(dāng)中有個(gè)時(shí),,此時(shí)共包含個(gè)基本事件;

當(dāng)中有個(gè)時(shí),,此時(shí)共包含個(gè)基本事件;

當(dāng)中有個(gè)時(shí),,此時(shí)共包含個(gè)基本事件;

當(dāng)中有個(gè)時(shí),,此時(shí)共包含個(gè)基本事件;

當(dāng)中有個(gè)時(shí),,此時(shí)共包含個(gè)基本事件;

因此的概率為

.

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為正整數(shù),各項(xiàng)均為正整數(shù)的數(shù)列滿足:,記數(shù)列的前項(xiàng)和為

1)若,求的值;

2)若,求的值;

3)若為奇數(shù),求證:的充要條件是為奇數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面α平面βl,ACα內(nèi)不同的兩點(diǎn),BDβ內(nèi)不同的兩點(diǎn),且AB,C,D直線l,M,N分別是線段AB,CD的中點(diǎn).下列判斷正確的是( 。

A.ABCD,則MNl

B.M,N重合,則ACl

C.ABCD相交,且ACl,則BD可以與l相交

D.ABCD是異面直線,則MN不可能與l平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC的內(nèi)角AB,C的對(duì)邊分別為a,bc,已知2a2bcosC+csinB

(Ⅰ)求tanB

(Ⅱ)若C,ABC的面積為6,求BC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,底面為正方形,,為等邊三角形,線段的中點(diǎn)為,若,則此四棱錐的外接球的表面積為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span>D,若存在實(shí)常數(shù),對(duì)任意,當(dāng)時(shí),都有成立,則稱函數(shù)具有性質(zhì).

1)判斷函數(shù)是否具有性質(zhì),并說明理由;

2)若函數(shù)具有性質(zhì),求應(yīng)滿足的條件;

3)已知函數(shù)不存在零點(diǎn),當(dāng)時(shí)具有性質(zhì)(其中,),記,求證:數(shù)列為等比數(shù)列的充要條件是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,側(cè)面為等邊三角形,且垂直于底面 ,分別是的中點(diǎn).

1)證明:平面平面;

2)已知點(diǎn)在棱上且,求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+lnx(a∈R).

(1)當(dāng)a=時(shí),求f(x)在區(qū)間[1,e]上的最大值和最小值;

(2)如果函數(shù)g(x),f1x),f2(x),在公共定義域D上,滿足f1x)<gx)<f2(x),那么就稱g(x)為f1x),f2(x)的“活動(dòng)函數(shù)”.已知函數(shù). 。若在區(qū)間(1,+∞)上,函數(shù)f(x)是f1x),f2(x)的“活動(dòng)函數(shù)”,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)今世界科技迅猛發(fā)展,信息日新月異.為增強(qiáng)全民科技意識(shí),提高公眾科學(xué)素養(yǎng),某市圖書館開展了以“親近科技、暢想未來”為主題的系列活動(dòng),并對(duì)不同年齡借閱者對(duì)科技類圖書的情況進(jìn)行了調(diào)查.該圖書館從只借閱了一本圖書的借閱者中隨機(jī)抽取100名,數(shù)據(jù)統(tǒng)計(jì)如表:

借閱科技類圖書(人)

借閱非科技類圖書(人)

年齡不超過50

20

25

年齡大于50

10

45

1)是否有99%的把握認(rèn)為年齡與借閱科技類圖書有關(guān)?

2)該圖書館為了鼓勵(lì)市民借閱科技類圖書,規(guī)定市民每借閱一本科技類圖書獎(jiǎng)勵(lì)積分2分,每借閱一本非科技類圖書獎(jiǎng)勵(lì)積分1分,積分累計(jì)一定數(shù)量可以用積分換購自己喜愛的圖書.用表中的樣本頻率作為概率的估計(jì)值.

i)現(xiàn)有3名借閱者每人借閱一本圖書,記此3人增加的積分總和為隨機(jī)變量ξ,求ξ的分布列和數(shù)學(xué)期望;

ii)現(xiàn)從只借閱一本圖書的借閱者中選取16人,則借閱科技類圖書最有可能的人數(shù)是多少?

附:K2,其中na+b+c+d

PK2k

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案