6.若復(fù)數(shù)z滿足$\frac{\overline z}{1+i}=i$,其中i為虛數(shù)單位,則z=( 。
A.1-iB.1+iC.-1-iD.-1+i

分析 利用復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義即可得出.

解答 解:$\frac{\overline z}{1+i}=i$,∴$\overline{z}$=i(1+i)=-1+i,則z=-1-i.
故選:C.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.三棱椎A(chǔ)-BCD的三視圖為如圖所示的三個(gè)直角三角形,則三棱錐A-BCD的表面積為(  )
A.2+2$\sqrt{5}$B.4+4$\sqrt{5}$C.$\frac{{4+4\sqrt{5}}}{3}$D.4+$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{2^x}+1,x>3\\{4^x}-4,x≤3\end{array}$,若f(a)=f(2),且a≠2,則f(2a)=122.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在△ABC中,a,b,c是角A,B,C所對(duì)應(yīng)邊,且a,b,c成等比數(shù)列,則sinA($\frac{1}{tanA}$+$\frac{1}{tanB}$)的取值范圍是($\frac{\sqrt{5}-1}{2}$,$\frac{\sqrt{5}+1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)定義域?yàn)镽的函數(shù)f(x)=$\left\{\begin{array}{l}{0}&{x=1}\\{|lg|x-1||}&{x≠1}\end{array}\right.$,則關(guān)于x的方程f2(x)+bf(x)+c=0有7個(gè)不同實(shí)數(shù)解的充要條件是( 。
A.b<0且c>0B.b>0且c<0C.b<0且c=0D.b>0且c=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在平面直角坐標(biāo)系XOY中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2+3cosα}\\{y=1+3sinα}\end{array}\right.$(α為參數(shù)),在以原點(diǎn)為極點(diǎn),x軸正半軸為極坐標(biāo)系中,直線l的極坐標(biāo)方程為ρsin(θ-$\frac{π}{4}$)=$\sqrt{2}$
(1)求C的普通方程和l的傾斜角;
(2)設(shè)點(diǎn)M(0,2),l與C交于A、B兩點(diǎn),且AB的中點(diǎn)為N,求|MN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若兩個(gè)球的體積之比為1:8,則這兩個(gè)球的表面積之比為(  )
A.1:2B.1:4C.1:8D.1:16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=(2-a)(x-1)-2lnx,a∈R.
(Ⅰ)若a=1,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若不等式f(x)>0在區(qū)間(0,$\frac{1}{2}$)上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=lnx,g(x)=ex
(1)若函數(shù)y=ax+f(x)在區(qū)間(0,e]上的最大值為-4,求實(shí)數(shù)a的值;
(2)若函數(shù)y=ag(2x)+bg(x)-x有兩個(gè)不同的零點(diǎn)x1,x2,x0是x1,x2的等差數(shù)列,證明:當(dāng)a>0時(shí),不等式2ag(2x0)+bg(x0)<f(e)成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案