9.已知函數(shù)f(x)=x3-3ax-1,(a≠0).
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)在x=-1處取得極值,直線y=m與y=f(x)的圖象有且只有一個交點,求m的取值范圍.

分析 (1)求出函數(shù)的導數(shù),通過討論a的范圍,求出函數(shù)的單調(diào)區(qū)間即可;
(2)求出函數(shù)的導數(shù),計算f′(-1)=3,求出a的值,關(guān)鍵函數(shù)的單調(diào)性求出函數(shù)的極值,畫出函數(shù)的圖象,從而求出m的范圍即可.

解答 解:(1)f′(x)=3x2-3a=3(x2-a),
當a<0時,對x∈R,有f′(x)>0,
∴當a<0時,f(x)的單調(diào)增區(qū)間為(-∞,+∞);
當a>0時,由f′(x)>0,解得x<-$\sqrt{a}$或x>$\sqrt{a}$.
由f′(x)<0,解得-$\sqrt{a}$<x<$\sqrt{a}$,
∴當a>0時,f(x)的單調(diào)增區(qū)間為(-∞,-$\sqrt{a}$),($\sqrt{a}$,+∞),單調(diào)減區(qū)間為(-$\sqrt{a}$,$\sqrt{a}$).
(2)∵f(x)在x=-1處取得極值,
∴f′(-1)=3(-1)2-3a=0,∴a=1.
∴f(x)=x3-3x-1,f′(x)=3x2-3,
由f′(x)=0,解得x1=-1,x2=1.
由(1)中f(x)的單調(diào)性可知,
f(x)在x=-1處取得極大值f(-1)=1,
在x=1處取得極小值f(1)=-3,
∵直線y=m與函數(shù)y=f(x)的圖象有三個不同的交點,
結(jié)合如圖所示f(x)的圖象可知:

實數(shù)m的取值范圍是(-∞,-3)∪(1,+∞).

點評 本題考查了函數(shù)的單調(diào)性、極值問題,考查導數(shù)的應(yīng)用以及數(shù)形結(jié)合思想,是一道中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

18.過點A(1,0)和B(2,1)的直線的傾斜角為( 。
A.30°B.45°C.135°D.150°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知AB是經(jīng)過拋物線y2=2px的焦點的弦,若點A、B的橫坐標分別為1和$\frac{1}{4}$,則該拋物線的準線方程為(  )
A.x=1B.x=-1C.x=$\frac{1}{2}$D.x=-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=ex-2x.
(1)求函數(shù)f(x)的極值;
(2)證明:當x>0時,曲線y=x2恒在曲線y=ex的下方;
(3)討論函數(shù)g(x)=x2-aex(a∈R)零點的個數(shù).
參考公式:alogaN=N(a>0,a≠1,N>0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,在七面體ABCDEFGH中,底面ABCDEF是邊長為2的正六邊形,AG=DH=3,且
AG,DH都與底面ABCDEF垂直.
(Ⅰ)求證:平面ABG∥平面DEH;
(Ⅱ)平面BCHG與平面DEH所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=lnx+$\frac{a}{x}-\frac{x}{3}$,其中a∈R.
(Ⅰ)當a=$\frac{2}{3}$時,求f(x)的零點的個數(shù);
(Ⅱ)若函數(shù)g(x)=xf(x)-a+$\frac{2-3a}{6}$x2-x有兩個極值x1,x2,且x1<x2,求證:lnx1+lnx2>2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x^2}+1,x≤0\\-x+1,x>0\end{array}$,若a=f(${log_2}\frac{1}{3}$),b=f(${2^{\frac{1}{3}}}$),c=f(${3^{-\frac{1}{2}}}$),則( 。
A.a>b>cB.c>b>aC.a>c>bD.b>c>a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.若冪函數(shù)f(x)=xm+1在區(qū)間(0,+∞)是單調(diào)減函數(shù),則實數(shù)m的取值范圍是(-∞,-1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.下列各式中,最小的是(  )
A.2cos240°-1B.2sin6°cos6°
C.sin50°cos37°-sin40°cos53°D.$\frac{\sqrt{3}}{2}$sin41°-$\frac{1}{2}$cos41°

查看答案和解析>>

同步練習冊答案