(本題12分)
如圖的幾何體中,平面,平面,△為等邊三角形, ,為的中點(diǎn).
(1)求證:平面;
(2)求證:平面平面;
(3)求此幾何體的體積。
(1)只需證;(2)只需證BG⊥平面;(3)。
解析試題分析:證明:取的中點(diǎn),連結(jié).∵為的中點(diǎn),∴且.
∵平面,平面, ∴,∴.
又,∴. ∴四邊形為平行四邊形,則.
∵平面,平面, ∴平面.…………4分
8分
(3)解:取DE的中點(diǎn)M連BM,GM所以
=或…………12分
考點(diǎn):線面垂直的性質(zhì)定理;線面平行的判斷定理;面面垂直的判定定理;四棱錐的體積公式。
點(diǎn)評(píng):證明線面平行的常用方法:
①定義:若一條直線和一個(gè)平面沒(méi)有公共點(diǎn),則它們平行;
②線線平行Þ線面平行
若平面外的一條直線平行于平面內(nèi)的一條直線,則它與這個(gè)平面平行。
即
③面面平行Þ線面平行
若兩平面平行,則其中一個(gè)平面內(nèi)的任一條直線平行于另一個(gè)平面。
即
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知四棱錐的底面為直角梯形,,底面,且,,是的中點(diǎn)。
(Ⅰ)證明:面面;
(Ⅱ)求與所成的角;
(Ⅲ)求面與面所成二面角的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)如圖,在直三棱柱中,,分 別是棱上的點(diǎn)(點(diǎn) 不同于點(diǎn)),且為的中點(diǎn).
求證:(1)平面平面(2)直線平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題12分)如圖,已知正四棱柱ABCD—A1B1C1D1中,底面邊長(zhǎng)AB=2,側(cè)棱BB1的長(zhǎng)為4,過(guò)點(diǎn)B作B1C的垂線交側(cè)棱CC1于點(diǎn)E,交B1C于點(diǎn)F,
⑵ 證:平面A1CB⊥平面BDE;
⑵求A1B與平面BDE所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)如圖是某直三棱柱(側(cè)棱與底面垂直)被削去上底后的直觀圖與三視圖的側(cè)視圖,俯視圖,在直觀圖中,M是BD的中點(diǎn),N是BC的中點(diǎn),側(cè)視圖是直角梯形,俯視圖是等腰直角三角形,有關(guān)數(shù)據(jù)如圖所示.
(1)求該幾何體的體積;
(2)求證:AN∥平面CME;
(3)求證:平面BDE⊥平面BCD
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)直三棱柱中,點(diǎn)M、N分別為線段的中點(diǎn),平面側(cè)面
(1)求證:MN//平面 (2)證明:BC平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分為12分)
如圖所示:已知⊙O所在的平面,AB是⊙O的直徑,C是⊙O上任意一點(diǎn),過(guò)A作于E,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知四邊形滿足∥,,是的中點(diǎn),將沿著翻折成,使面面,為的中點(diǎn).
(Ⅰ)求四棱的體積;(Ⅱ)證明:∥面;
(Ⅲ)求面與面所成二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com