精英家教網 > 高中數學 > 題目詳情

 (本小題滿分12分)請你設計一個包裝盒,如下圖所示,ABCD是邊長為60cm的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得A、B、C、D四個點重合于圖中的點P,正好形成一個正四棱挪狀的包裝盒E、F在AB上,是被切去的一等腰直角三角形斜邊的兩個端點.設AE= FB=x(cm).

(I)某廣告商要求包裝盒的側面積S(cm2)最大,試問x應取何值?
(II)某廠商要求包裝盒的容積V(cm3)最大,試問x應取何值?并求出此時包裝盒的高與底面邊長的比值.[

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

如圖,四棱錐的底面是矩形,⊥平面,.

(1)求證:⊥平面
(2)求二面角余弦值的大;
(3)求點到平面的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分14分)
如圖所示,在正三棱柱ABC -A1B1C1中,底面邊長和側棱長都是2,D是側棱CC1上任意一點,E是A1B1的中點。

(I)求證:A1B1//平面ABD;
(II)求證:AB⊥CE;
(III)求三棱錐C-ABE的體積。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
如圖,在梯形中,,,,平面平面,四邊形是矩形,,點在線段上.

(1)求證:平面BCF⊥平面ACFE;
(2)當為何值時,∥平面?證明你的結論;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,直三棱柱中,,是棱的中點.
(Ⅰ)證明:;
(Ⅱ)求二面角的余弦值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知圓錐的軸截面ABC是邊長為2的正三角形,O是底面圓心.
(Ⅰ)求圓錐的表面積;
(Ⅱ)經過圓錐的高AO的中點O¢作平行于圓錐底面的截面,
求截得的圓臺的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知頂點的坐標為,.
1)求點到直的距離的面積
(2)求外接圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

    (本小題滿分12分)
如圖,四邊形ABCD為正方形,四邊形BDEF為矩形,AB=2BF,E丄平面ABCD,G為EF中點.

(1)求證:CF//平面
(2) 求證:平面ASG丄平面CDG;
(3)求二面角C—FG—B的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(9分)已知上的點.
(1)當中點時,求證
(2)當二面角的大小為的值.

查看答案和解析>>

同步練習冊答案