分析:(1)當(dāng)a=b=1時(shí),f(x)=x
2+2x,原不等式log
2f(x)≤3轉(zhuǎn)化為log
2(x
2+2x)≤log
28再結(jié)合對(duì)數(shù)函數(shù)的性質(zhì)去掉對(duì)數(shù)符號(hào)轉(zhuǎn)化成二次不等式組求解即得;
(2)先根據(jù)f(1)=1求出a+2b的值,利用
+=+,再結(jié)合均值不等式求得答案.
解答:解:(1)當(dāng)a=b=1時(shí),f(x)=x
2+2x
則:log
2f(x)≤3?log
2(x
2+2x)≤log
28
?⇒⇒-4≤x<-2或0<x≤2;
(2)當(dāng)f(1)=1時(shí),有a+2b=1
則:
+=+=3++∵a,b∈R
+,∴
+≥2當(dāng)且僅當(dāng)
=,即:
a=b等號(hào)成立
∴
+=3++≥3+2即:
(+)min=3+2.
點(diǎn)評(píng):本小題主要考查函數(shù)單調(diào)性的應(yīng)用、基本不等式等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.