【題目】數(shù)列
(1)在等差數(shù)列{an}中,a6=10,S5=5,求該數(shù)列的第8項(xiàng)a8
(2)在等比數(shù)列{bn}中,b1+b3=10,b4+b6= ,求該數(shù)列的前5項(xiàng)和S5

【答案】
(1)解:設(shè)數(shù)列{an}的公差為d,由已知a6=10,S5=5,

,

解得

所以a8=a1+7d=﹣5+7×3=16.

(或者a8=a6+2d=10+2×3=16)


(2)解:解法一:設(shè)數(shù)列{bn}的公比為q,由已知

,

解得 ,

所以 = =

解法二:設(shè)數(shù)列{bn}的公比為q.

,得

從而得

又因?yàn)? ,

從而得b1=8.(9分)

所以 =


【解析】(1)由等差數(shù)列通項(xiàng)公式列出方程組,求出首項(xiàng)與公差,由此能求出該數(shù)列的第8項(xiàng)a8 . (2)法一:由等比數(shù)列通項(xiàng)公式列出方程組,求出首項(xiàng)與公比,由此能求出該數(shù)列的前5項(xiàng)和S5;法二:由 ,得 ,從而求出公比,進(jìn)而得b1 , 由此能求出該數(shù)列的前5項(xiàng)和S5
【考點(diǎn)精析】通過靈活運(yùn)用等差數(shù)列的通項(xiàng)公式(及其變式)和等比數(shù)列的前n項(xiàng)和公式,掌握通項(xiàng)公式:;前項(xiàng)和公式:即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017福建三明5月質(zhì)檢】已知橢圓的右焦點(diǎn),橢圓的左,右頂點(diǎn)分別為.過點(diǎn)的直線與橢圓交于兩點(diǎn),且的面積是的面積的3倍.

(Ⅰ)求橢圓的方程;

(Ⅱ)若軸垂直,是橢圓上位于直線兩側(cè)的動(dòng)點(diǎn),且滿足,試問直線的斜率是否為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國是世界上嚴(yán)重缺水的國家.某市為了制定合理的節(jié)水方案,對居民用水情況進(jìn)行了調(diào)查,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸).將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中a的值;
(Ⅱ)設(shè)該市有30萬居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),并說明理由;
(Ⅲ)估計(jì)居民月均水量的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了增強(qiáng)環(huán)保意識,我校從男生中隨機(jī)抽取了60人,從女生中隨機(jī)抽取了50人參加環(huán)保知識測試,統(tǒng)計(jì)數(shù)據(jù)如下表所示:

優(yōu)秀

非優(yōu)秀

總計(jì)

男生

40

20

60

女生

20

30

50

總計(jì)

60

50

110


(1)試判斷是否有99%的把握認(rèn)為環(huán)保知識是否優(yōu)秀與性別有關(guān);
(2)為參加市里舉辦的環(huán)保知識競賽,學(xué)校舉辦預(yù)選賽,已知在環(huán)保測試中優(yōu)秀的同學(xué)通過預(yù)選賽的概率為 ,現(xiàn)在環(huán)保測試中優(yōu)秀的同學(xué)中選3人參加預(yù)選賽,若隨機(jī)變量X表示這3人中通過預(yù)選賽的人數(shù),求X的分布列與數(shù)學(xué)期望.
附:K2=

P(K2≥k)

0.500

0.400

0.100

0.010

0.001

k

0.455

0.708

2.706

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的中心在坐標(biāo)原點(diǎn),離心率 ,且其中一個(gè)焦點(diǎn)與拋物線 的焦點(diǎn)重合.
(1)求橢圓C的方程;
(2)過點(diǎn)S( ,0)的動(dòng)直線l交橢圓C于A、B兩點(diǎn),試問:在坐標(biāo)平面上是否存在一個(gè)定點(diǎn)T,使得無論l如何轉(zhuǎn)動(dòng),以AB為直徑的圓恒過點(diǎn)T,若存在,求出點(diǎn)T的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn=n2 , {bn}為等比數(shù)列,且a1=b1 , b2(a2﹣a1)=b1
(1)求數(shù)列{an},{bn}的通項(xiàng)公式.
(2)設(shè)cn=anbn , 求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題p:直線y=kx+3與圓x2+y2=1相交于A,B兩點(diǎn);命題q:曲線=1表示焦點(diǎn)在y軸上的雙曲線,若p∧q為真命題,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)=x2+bx+c(其中b,c為實(shí)常數(shù)).
(1)若b>2,且y=f(sinx)(x∈R)的最大值為5,最小值為﹣1,求函數(shù)y=f(x)的解析式;
(2)是否存在這樣的函數(shù)y=f(x),使得{y|y=x2+bx+c,﹣1≤x≤0}=[﹣1,0],若存在,求出函數(shù)y=f(x)的解析式;若不存在,請說明理由.
(3)記集合A={x|f(x)=x,x∈R},B={x|f(f(x))=x,x∈R}.
①若A≠,求證:B≠;
②若A=,判斷B是否也為空集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017四川宜賓二診】如甲圖所示,在矩形中, , 的中點(diǎn),將沿折起到位置,使平面平面,得到乙圖所示的四棱錐

求證: 平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案