設橢圓的兩個焦點是,且橢圓上存在點P,使得直線PF2與直線PF2垂直.

   1)求實數(shù)m的取值范圍;

   2)設L是相應于焦點F2的準線,直線PF2L相交于點Q.

求直線PF2的方程.

 

 

答案:
解析:

解:(1)由題設有

設點P的坐標為(),由,得,

化簡得     ①

將①與聯(lián)立,解得 

所以m的取值范圍是.

(2)準線L的方程為設點Q的坐標為,則

   ②

代入②,化簡得

由題設,得 ,無解.

代入②,化簡得

由題設,得

解得m=2.

從而得到PF2的方程

 


練習冊系列答案
相關習題

科目:高中數(shù)學 來源:數(shù)學教研室 題型:044

設橢圓的兩個焦點是,且橢圓上存在點P,使得直線PF2與直線PF2垂直.

   1)求實數(shù)m的取值范圍;

   2)設L是相應于焦點F2的準線,直線PF2L相交于點Q. ,

求直線PF2的方程.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(04年全國卷III文)(12分)

設橢圓的兩個焦點是 F1(-c,0), F2(c,0)(c>0),且橢圓上存在點P,使得直線 PF1與直線PF2垂直.

(I)求實數(shù) m 的取值范圍.

(II)設l是相應于焦點 F2的準線,直線PF2與l相交于點Q. 若,求直線PF2的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)設橢圓的兩個焦點是

   (1)設E是直線與橢圓的一個公共點,求使得取最小值時橢圓的方程;   (2)已知設斜率為的直線與條件(1)下的橢圓交于不同的兩點A,B,點Q滿足,且,求直線軸上截距的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設橢圓的兩個焦點是,且橢圓上存在點P,使得直線PF2與直線PF2垂直.

(1)求實數(shù)m的取值范圍;

(2)設L是相應于焦點F2的準線,直線PF2與L相交于點Q. 若,求直線PF2的方程.

查看答案和解析>>

同步練習冊答案