7.設(shè)e是橢圓$\frac{x^2}{k}+\frac{y^2}{4}=1$的離心率,且$e∈({\frac{1}{2},1})$,則實數(shù)k的取值范圍是(  )
A.(0,3)B.$({3,\frac{16}{3}})$C.(0,2)D.$({0,3})∪({\frac{16}{3},+∞})$

分析 當k>4時,e2=$\frac{k-4}{k}∈(\frac{1}{4},1)$⇒k;當0<k<4時,e2=$\frac{4-k}{4}∈(\frac{1}{4},1)$⇒k;

解答 解:當k>4時,e2=$\frac{k-4}{k}∈(\frac{1}{4},1)$⇒k>$\frac{16}{3}$;
當0<k<4時,e2=$\frac{4-k}{4}∈(\frac{1}{4},1)$⇒0<k<3;
故選:D

點評 本題考查了橢圓的離心率,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

17.如圖,是導(dǎo)數(shù)y=f′(x)的圖象,則函數(shù)y=f(x)的圖象是( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知函數(shù)f(x)是定義在R上的偶函數(shù),且f(-x-1)=f(x-1),當x∈[-1,0]時,f(x)=-x3,則關(guān)于x的方程f(x)=|cosπx|在[-$\frac{5}{2}$,$\frac{1}{2}$]上的所有實數(shù)解之和為( 。
A.-7B.-6C.-3D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.$\int_{-4}^4{\sqrt{16-{x^2}}}dx+\int_{-\frac{π}{2}}^{\frac{π}{2}}{x^3}dx-\int_1^2{({\frac{1}{x}-x})dx=}$8π+ln2-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.男嬰為24人,女嬰為8人;出生時間在白天的男嬰為31人,女嬰為26人.
(1)將下面的2×2列聯(lián)表補充完整;
出生時間
性別
晚上白天合計
男嬰
女嬰
合計
(2)能否在犯錯誤的概率不超過0.1的前提下認為嬰兒性別與出生時間有關(guān)系?
參考公式:(1)K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d);
(2)獨立性檢驗的臨界值表:
P(K2≥k00.100.050.010
k02.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)f(x)=2x,若從區(qū)間[-2,2]上任取一個實數(shù)x,則使不等式f(x)>2成立的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2016}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知函數(shù)f (x)及其導(dǎo)數(shù)f′(x),若存在x0,使得f (x0)=f′(x0),則稱x0是f (x)的一個“巧值點”,下列函數(shù)中,存在“巧值點”的是①②③⑤.(填上所有正確的序號)
①f (x)=x2
②f(x)=sinx,
③f (x)=lnx,
④f (x)=tanx,
⑤f(x)=x+$\frac{1}{x}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.設(shè)i是虛數(shù)單位,${i^7}-\frac{2}{i}$=( 。
A.-iB.-3iC.iD.3i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知等比數(shù)列{an}的首項為a1,公比為q,滿足a1(q-1)<0且q>0,則( 。
A.{an}的各項均為正數(shù)B.{an}的各項均為負數(shù)
C.{an}為遞增數(shù)列D.{an}為遞減數(shù)列

查看答案和解析>>

同步練習冊答案