函數(shù)f(x)=sin(ωx+?)(|?|<
π
2
)的最小正周期是π,且其圖象向右平移
π
6
個單位后得到的函數(shù)是奇函數(shù),則函數(shù)f(x)的圖象(  )
分析:由周期求出ω=2,故函數(shù)f(x)=sin(2x+φ),再根據(jù)圖象向右平移
π
6
個單位后得到的函數(shù) y=sin(2x-+φ]是奇函數(shù),可得φ的值,從而得到函數(shù)的解析式,從而求得它的對稱性.
解答:解:由題意可得
ω
=π,解得ω=2,故函數(shù)f(x)=sin(2x+φ),其圖象向右平移
π
6
個單位后得到的函數(shù)圖象對應的函數(shù)為y=sin[2(x-
π
6
)+φ]=sin(2x-
π
3
+φ]是奇函數(shù),故φ=
π
3
,
故 函數(shù)f(x)=sin(2x+
π
3
),故當x=
π
12
時,函數(shù)f(x)=sin=1,
故函數(shù)f(x)=sin(2x+
π
3
) 關于直線x=
π
12
對稱,
故選A.
點評:本題主要考查誘導公式的應用,利用了y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的對稱性,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知角a的頂點在原點,始邊與x軸的正半軸重合,終邊經(jīng)過點P(-3,
3
).
(1)定義行列式
.
ab
cd
.
=a•d-b•c,解關于x的方程:
.
cosxsinx
sinacosa
.
+1=0;
(2)若函數(shù)f(x)=sin(x+a)+cos(x+a)(x∈R)的圖象關于直線x=x0對稱,求tanx0的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=sin(2x+φ)(-π<φ<0),y=f(x)的圖象過點(
π8
,-1).
(1)求φ;  
(2)求函數(shù)y=f(x)的周期和單調增區(qū)間;
(3)在給定的坐標系上畫出函數(shù)y=f(x)在區(qū)間,[0,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=sin(ωx+?)(x∈R,ω>0,0≤?<2π)的部分圖象如圖,則
(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(wx+
π
2
)(w>0),其圖象上相鄰的兩個最低點間的距離為2π.
(1)求ω的值及f(x)
(2)若a∈(-
π
3
,
π
2
),f(a+
π
3
)=
1
3
,求sin(2a+
3
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•紅橋區(qū)一模)函數(shù)f(x)=sin(2ωx+
π
6
)+1(x∈R)圖象的兩相鄰對稱軸間的距離為1,則正數(shù)ω的值等于( 。

查看答案和解析>>

同步練習冊答案