有一塊邊長為4米的正方形鋼板,現(xiàn)對其進(jìn)行切割,焊接成一個(gè)長方體無蓋容器(切、焊損耗忽略不計(jì)),有人用數(shù)學(xué)知識作了如下設(shè)計(jì):在鋼板的四個(gè)角處各切去一個(gè)小正方形,剩余部分圍成長方體。
(Ⅰ)求這種切割、焊接而成的長方體的最大容積.
(Ⅱ)請問:能重新設(shè)計(jì),使所得長方體的容器的容積嗎?若能、給出你的一種設(shè)計(jì)方案。
(Ⅰ)(m3);(Ⅱ)能(參考解析)
【解析】
試題分析:(Ⅰ)根據(jù)題意可得假設(shè)每個(gè)小正方形的邊長為x.則通過折疊可得一個(gè)無蓋的正方體.所以可以求出正方體的體積的表達(dá).通過求導(dǎo)可求得體積的最大值.
(Ⅱ)本小題的設(shè)計(jì)較困難.通過對比和體積公式的應(yīng)用可以假設(shè)出較多的方案.本小題的設(shè)計(jì)方案具有一定的技巧性.
試題解析:(1)設(shè)切去的小正方形邊長為x.則.所以.所以當(dāng)時(shí). .當(dāng)時(shí). .所以當(dāng)時(shí). (m3).
(2)能.如圖所示.先在在正方形一邊的兩個(gè)角出各切下一個(gè)邊長為1米的小正方形.再將這兩個(gè)小正方形焊接在另一邊的中間.然后焊接成長方形容器.此時(shí). .
考點(diǎn):1.正方體的體積的求法.2.導(dǎo)數(shù)求最值.3.創(chuàng)新思維的構(gòu)造.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年福建省莆田市高三質(zhì)量檢查數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com