(本小題滿分12分)設(shè),且曲線處的切線與軸平行

(1)求的值,并討論的單調(diào)性;

(2)證明:當(dāng)時,

 

(1),,單調(diào)遞減,在單調(diào)遞增;(2)證明略

【解析】

試題分析:(1)利用導(dǎo)數(shù)的幾何意義求曲線在點(diǎn)處的切線方程,注意這個點(diǎn)的切點(diǎn),利用導(dǎo)數(shù)的幾何意義求切線的斜率;(2)函數(shù)在某個區(qū)間內(nèi)可導(dǎo),則若,則在這個區(qū)間內(nèi)單調(diào)遞增,若,則在這個區(qū)間內(nèi)單調(diào)遞減;(3)若可導(dǎo)函數(shù)在指定的區(qū)間上單調(diào)遞增或單調(diào)遞減,求參數(shù)問題,可轉(zhuǎn)化為恒成立,從而構(gòu)建不等式,要注意“=”是否可以取到;(4)對于恒成立的問題,常用到兩個結(jié)論:(1),(2).

試題解析:【解析】
(1).有條件知,

,故. 2分

于是.

故當(dāng)時,<0;

當(dāng)時,>0.

從而單調(diào)遞減,在單調(diào)遞增. 6分

(2)由(1)知單調(diào)增加,故的最大值為

最小值為

從而對任意,,有. 10分

而當(dāng)時,.

從而 12分

考點(diǎn):1、利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間;2、利用導(dǎo)數(shù)求函數(shù)的最值.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

拋物線C1:y2=2px(p>0)與雙曲線C2
x2
a2
-
y2
b2
=1(a>0,b>0)交于A,B兩點(diǎn),C1與C2的兩條漸近線分別交于異于原點(diǎn)的兩點(diǎn)C,D,且AB,CD分別過C2,C1的焦點(diǎn),則
|AB|
|CD|
=( 。
A、
5
2
B、
6
2
C、
5
D、
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)的值域是[
1
2
,4],則函數(shù)F(x)=f(x)+
1
f(x)
的值域是(  )
A、[
1
2
,4]
B、[
5
2
,
17
4
]
C、[2,
17
4
]
D、[4,
17
4
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,該幾何體的體積為( 。
A、
26
3
B、8+
π
3
C、
14π
3
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A、12B、18C、24D、30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆寧夏高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

已知定義在上的函數(shù)、滿足,且,

,若有窮數(shù)列的前項(xiàng)和等于,則=

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆寧夏高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

已知非零向量則△ABC的形狀是

A.等邊三角形

B.直角三角形

C.等腰(非等邊)三角形

D.三邊均不相等的三角形

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆寧夏高三上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

中,內(nèi)角的對邊長分別是,若,則角的大小為

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆天津市高三上學(xué)期零月月考文科數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,PC切圓O于點(diǎn)C,割線PAB經(jīng)過圓心O,弦CDAB于點(diǎn)E.已知圓O的半徑為3,PA=2,則CD= .

 

 

查看答案和解析>>

同步練習(xí)冊答案