6.已知正數(shù)數(shù)列{an}的前n項(xiàng)和${S_n}=\frac{1}{4}{({{a_n}+1})^2}$,則an=2n-1.

分析 ${S_n}=\frac{1}{4}{({{a_n}+1})^2}$,n=1時(shí),a1=S1=$\frac{1}{4}({a}_{1}+1)^{2}$,解得a1.n≥2時(shí),an=Sn-Sn-1,再利用等差數(shù)列的通項(xiàng)公式即可得出.

解答 解:∵${S_n}=\frac{1}{4}{({{a_n}+1})^2}$,
∴n=1時(shí),a1=S1=$\frac{1}{4}({a}_{1}+1)^{2}$,解得a1=1.
n≥2時(shí),an=Sn-Sn-1=$\frac{1}{4}({a}_{n}+1)^{2}$-$\frac{1}{4}({a}_{n-1}+1)^{2}$,化為:(an+an-1)(an-an-1-2)=0,
∵an>0,∴an-an-1=2,
∴數(shù)列{an}是等差數(shù)列,首項(xiàng)為1,公差為2.
∴an=1+2(n-1)=2n-1.
故答案為:2n-1.

點(diǎn)評(píng) 本題考查了數(shù)列遞推關(guān)系、等差數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.0<a<1是函數(shù)f(x)=2ax2+1取值恒為正的(  )條件.
A.充分非必要B.必要非充分
C.充要D.既不充分又不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列關(guān)系中,正確的個(gè)數(shù)為( 。
①$\frac{{\sqrt{2}}}{2}∈R$
②0∈N*
③{-5}⊆Z
④∅={∅}.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某程序框圖如圖所示,執(zhí)行該程序,若輸入4,則輸出S=(  )
A.10B.17C.19D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若集合M={x|(x-1)(x-4)=0},N={x|(x+1)(x-3)<0},則M∩N=( 。
A.B.{1}C.{4}D.{1,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知復(fù)數(shù)$z=1+\sqrt{3}•i$(i為虛數(shù)單位),則|z|=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知△ABC的面積為360,點(diǎn)P是三角形所在平面內(nèi)一點(diǎn),且$\overrightarrow{AP}=\frac{1}{4}\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AC}$,則△PAB的面積為90.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知從“神十”飛船帶回的某種植物種子每粒成功發(fā)芽的概率都為$\frac{1}{3}$,某植物研究所進(jìn)行該種子的發(fā)芽實(shí)驗(yàn),每次實(shí)驗(yàn)種一粒種子,每次實(shí)驗(yàn)結(jié)果相互獨(dú)立,假定某次實(shí)驗(yàn)種子發(fā)芽則稱該次實(shí)驗(yàn)是成功的,如果種子沒有發(fā)芽,則稱該次實(shí)驗(yàn)是失敗的.若該研究所共進(jìn)行四次實(shí)驗(yàn),設(shè)ξ表示四次實(shí)驗(yàn)結(jié)束時(shí)實(shí)驗(yàn)成功的次數(shù)與失敗的次數(shù)之差的絕對(duì)值.
(Ⅰ)求隨機(jī)變量ξ的分布列及ξ的數(shù)學(xué)期望E(ξ);
(Ⅱ)記“不等式ξx2-ξx+1>0的解集是實(shí)數(shù)集R”為事件A,求事件A發(fā)生的概率P(A).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)函數(shù)f(x)=-|x|,g(x)=lg(ax2-4x+1),若對(duì)任意x1∈R,都存在x2∈R,使f(x1)=g(x2),則實(shí)數(shù)a的取值范圍為( 。
A.(-2,0]B.(0,2]C.(-∞,4]D.[4,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案