【題目】拋擲紅、藍(lán)兩顆骰子,當(dāng)已知紅色骰子的點(diǎn)數(shù)為偶數(shù)時(shí),兩顆骰子的點(diǎn)數(shù)之和不小于9的概率是( 。

A. B. C. D.

【答案】C

【解析】

利用列舉法求出當(dāng)紅色骰子的點(diǎn)數(shù)為偶數(shù)時(shí),有18種,其中兩棵骰子點(diǎn)數(shù)之和不小于9的有6種,由此能求出當(dāng)已知紅色骰子的點(diǎn)數(shù)為偶數(shù)時(shí),兩顆骰子的點(diǎn)數(shù)之和不小于9的概率.

拋擲紅、藍(lán)兩枚骰子,第一個(gè)數(shù)字代表紅色骰子,第二個(gè)數(shù)字代表藍(lán)色骰子,

當(dāng)紅色骰子的點(diǎn)數(shù)為偶數(shù)時(shí),有18種,分別為:

(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(4,1),(4,2),(4,3),

(4,4),(4,5),(4,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),

其中兩棵骰子點(diǎn)數(shù)之和不小于9的有6種,分別為:

(4,5),(4,6),(6,3),(6,4),(6,5),(6,6),

∴當(dāng)已知紅色骰子的點(diǎn)數(shù)為偶數(shù)時(shí),兩顆骰子的點(diǎn)數(shù)之和不小于9的概率是P=

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在棱長(zhǎng)均相等的正四棱錐中, 為底面正方形的重心, 分別為側(cè)棱的中點(diǎn),有下列結(jié)論:

平面;②平面平面;③

④直線與直線所成角的大小為.

其中正確結(jié)論的序號(hào)是__________.(寫(xiě)出所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=12,,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是

A. yx具有正的線性相關(guān)關(guān)系

B. 回歸直線過(guò)樣本點(diǎn)的中心(,

C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg

D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)到準(zhǔn)線距離為.

(1)若點(diǎn),且點(diǎn)在拋物線上,求的最小值;

(2)若過(guò)點(diǎn)的直線與圓相切,且與拋物線有兩個(gè)不同交點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓的方程為,若拋物線過(guò)點(diǎn),且以圓0的切線為準(zhǔn)線,為拋物線的焦點(diǎn),點(diǎn)的軌跡為曲線.

(1)求曲線的方程;

(2)過(guò)點(diǎn)作直線交曲線兩點(diǎn),關(guān)于軸對(duì)稱,請(qǐng)問(wèn):直線是否過(guò)軸上的定點(diǎn),如果不過(guò)請(qǐng)說(shuō)明理由,如果過(guò)定點(diǎn),請(qǐng)求出定點(diǎn)的坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,A,B,C所對(duì)的邊分別為a,b,c且ccosA=4,asinC=5.

(1)求邊長(zhǎng)c;

(2)著△ABC的面積S=20.求△ABC的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,短軸長(zhǎng)為,離心率為

求橢圓C的方程;

若過(guò)點(diǎn)的直線與橢圓C交于A,B兩點(diǎn),且P點(diǎn)平分線段AB,求直線AB的方程;

一條動(dòng)直線l與橢圓C交于不同兩點(diǎn)M,N,O為坐標(biāo)原點(diǎn),的面積為求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a是實(shí)數(shù),函數(shù)

1)若,求a的值及曲線在點(diǎn)處的切線方程;

2)討論函數(shù)在區(qū)間上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電視臺(tái)舉行文藝比賽,并通過(guò)網(wǎng)絡(luò)對(duì)比賽進(jìn)行直播.比賽現(xiàn)場(chǎng)有5名專家評(píng)委給每位參賽選手評(píng)分,場(chǎng)外觀眾可以通過(guò)網(wǎng)絡(luò)給每位參賽選手評(píng)分.每位選手的最終得分由專家評(píng)分和觀眾評(píng)分確定.某選手參與比賽后,現(xiàn)場(chǎng)專家評(píng)分情況如表;場(chǎng)外有數(shù)萬(wàn)名觀眾參與評(píng)分,將評(píng)分按照[7,8),[8,9),[9,10]分組,繪成頻率分布直方圖如圖:

專家

A

B

C

D

E

評(píng)分

9.6

9.5

9.6

8.9

9.7

(1)求a的值,并用頻率估計(jì)概率,估計(jì)某場(chǎng)外觀眾評(píng)分不小于9的概率;

(2)從5名專家中隨機(jī)選取3人,X表示評(píng)分不小于9分的人數(shù);從場(chǎng)外觀眾中隨機(jī)選取3人,用頻率估計(jì)概率,Y表示評(píng)分不小于9分的人數(shù);試求E(X)與E(Y)的值;

(3)考慮以下兩種方案來(lái)確定該選手的最終得分:方案一:用所有專家與觀眾的評(píng)分的平均數(shù)作為該選手的最終得分,方案二:分別計(jì)算專家評(píng)分的平均數(shù)和觀眾評(píng)分的平均數(shù),用作為該選手最終得分.請(qǐng)直接寫(xiě)出的大小關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案