【題目】如圖,一個水輪的半徑為4m,水輪圓心O距離水面2m,已知水輪每分鐘轉(zhuǎn)動5圈,如果當水輪上點P從水中浮現(xiàn)時(圖中點p0)開始計算時間.
(1)將點p距離水面的高度z(m)表示為時間t(s)的函數(shù);
(2)點p第一次到達最高點大約需要多少時間?
【答案】(1) (2)點P第一次到達最高點大約需要4s.
【解析】試題分析:(1)令函數(shù)為,由題意可知函數(shù)最大值與最小值,由兩最值可得振幅與,再由每分鐘轉(zhuǎn)過的角度可得周期,利用周期與的關(guān)系可得其值,再將起始位置時, 滿足函數(shù)表達式代入可得值;(2)當函數(shù)取最值時,求出對應的值,取最小正值,即為所需要時間.
試題解析:(1)依題意可知z的最大值為6,最小為﹣2,
∴;
∵op每秒鐘內(nèi)所轉(zhuǎn)過的角為,得z=4sin,
當t=0時,z=0,得sinφ=﹣,即φ=﹣,故所求的函數(shù)關(guān)系式為
z=4sin+2
(2)令z=4sin+2=6,得sin=1,
取,得t=4,
故點P第一次到達最高點大約需要4s.
科目:高中數(shù)學 來源: 題型:
【題目】一盒中裝有12個球,其中5個紅球,4個黑球,2個白球,1個綠球.從中隨機取出1球,求:
(1)取出1球是紅球或黑球的概率;
(2)取出1球是紅球或黑球或白球的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知中國某手機品牌公司生產(chǎn)某款手機的年固定成本為40萬元,每生產(chǎn)1萬部還需另投入16萬元.設(shè)公司一年內(nèi)共生產(chǎn)該款手機萬部并全部銷量完,每萬部的銷售收入為萬元,且
(1)寫出年利潤萬元關(guān)于年產(chǎn)量(萬部)的函數(shù)解析式;
(2)當年產(chǎn)量為多少萬部時,公司在該款手機的生產(chǎn)中所獲得的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某服裝商場為了了解毛衣的月銷售量y(件)與月平均氣溫x(℃)之間的關(guān)系,隨機統(tǒng)計了某4個月的月銷售量與當月平均氣溫,其數(shù)據(jù)如下表:
(1) 算出線性回歸方程; (a,b精確到十分位)
(2)氣象部門預測下個月的平均氣溫約為3℃,據(jù)此估計,求該商場下個月毛衣的銷售量.
(參考公式:)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)f(x)= (m>0,n>0).
(1) 當m=n=1時,求證:f(x)不是奇函數(shù);
(2) 設(shè)f(x)是奇函數(shù),求m與n的值;
(3) 在(2)的條件下,求不等式f(f(x))+f <0的解集.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)據(jù)x1,x2,x3,…,xn是普通職工n(n≥3,n∈N*)個人的年收入,設(shè)這n個數(shù)據(jù)的中位數(shù)為x,平均數(shù)為y,方差為z,如果再加上世界首富的年收入xn+1,則這n+1個數(shù)據(jù)中,下列說法正確的是
A. 年收入平均數(shù)大大增大,中位數(shù)一定變大,方差可能不變
B. 年收入平均數(shù)大大增大,中位數(shù)可能不變,方差變大
C. 年收入平均數(shù)大大增大,中位數(shù)可能不變,方差也不變
D. 年收入平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=()x.
(Ⅰ)當x∈[﹣1,1]時,求函數(shù)y=[f(x)]2﹣2af(x)+3的最小值g(a);
(Ⅱ)在(Ⅰ)的條件下,是否存在實數(shù)m>n>3,使得g(x)的定義域為[n,m],值域為[n2,m2]?若存在,求出m、n的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)在點處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若在上恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等邊三角形,已知AD=4, ,AB=2CD=8.
(1)設(shè)M是PC上的一點,證明:平面MBD⊥平面PAD;
(2)當M點位于線段PC什么位置時,PA∥平面MBD?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com