在△ABC中,己知 ,sinB= sinCcos,又△ABC的面積為6(Ⅰ)求△ABC的三邊長;(Ⅱ)若D為BC邊上的一點,且CD=1,求 .
(Ⅰ) 3,4,5;(Ⅱ)
解析試題分析:(Ⅰ)由及sinB= sinCcos得sinCcos= = ,所以=0,因為,所以,所以 ,由平面向量數(shù)量積及三角形面積公式即可求出tanA的值,在Rt△ACB中,tanA=,求出,代入三角形面積公式求出,利用勾股定理求出c;(Ⅱ)由(Ⅰ)知tan∠BAC=,由三角函數(shù)定義知tan∠DAC=,利用兩角差的正切公式可求得tan∠BAD.
試題解析:(Ⅰ)設三邊分別為
∵,∴sin(A+C)=sinCcosA,
化為sinAcosC+cosAsinC=sinCcosA,
∴sinAcosC=0,可得
又
兩式相除可得
令
則
三邊長分別為3,4,5, (8分)
(Ⅱ)由(Ⅰ)知tan∠BAC=,由三角函數(shù)定義知tan∠DAC=,
所以tan=tan(∠BAC-∠DAC)=== (12分)
考點:三角變換,平面向量數(shù)量積,三角形面積公式,運算求解能力
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com