已知函數(shù)f(x)=x|x-2a|,a∈R.
(1)當a=1時,解方程f(x)=0;
(2)當0<a<3時,求函數(shù)y=f(x)在區(qū)間[0,7]的最大值g(a);
(3)若函數(shù)y=f(x)在區(qū)間(m,n)上既有最大值又有最小值,請分別求出m,n的取值范圍.
【答案】
分析:(1)當a=1時,由x|x-2|=0即可求得方程f(x)=0的解;
(2)因為0<a<3,對稱軸x=a處于區(qū)間[0,7]的偏左部分,g(a)=f(7)=49-14a,由a
2=7(7-2a),解得a=7(
-1),從而可得答案;
(3)當a=0時,f(x)=x|x|,可分析出f(x)在區(qū)間(m,n)既沒有最大值也沒有最小值;當a>0時,由a
2=x(x-2a)得x=(
+1)a,從而得0≤m<a,2a<n≤(
+1)a;當a<0時,同理可得(
+1)a≤m<2a,a<n≤0.
解答:解:(1)當a=1時,x|x-2|=0,解得x=0或x=2;…(2分)
(2)當x<2a時,f(x)=x(2a-x)=-(x-a)
2+a
2;
當x≥2a時,f(x)=x(x-2a)=(x-a)
2-a
2.
∵0<a<3,對稱軸x=a處于區(qū)間[0,7]的偏左部分,
由a
2=7(7-2a),解得a=7(
-1)…(6分)
∴g(a)=
,
即g(a)=
…(10分)
(3)當a=0時,f(x)=x|x|,
在區(qū)間(m,n)既沒有最大值也沒有最小值,不符合題意. …(12分)
當a>0時,由a
2=x(x-2a)得x=(
+1)a,
所以0≤m<a,2a<n≤(
+1)a; …(14分)
當a<0時,由-a
2=x(2a-x)得x=(
+1)a,
所以(
+1)a≤m<2a,a<n≤0.…(16分)
點評:本題考查帶絕對值的函數(shù),突出考查分類討論思想與方程思想、化歸思想的綜合應(yīng)用,考查抽象思維與運算能力,屬于難題.