橢圓的一個頂點與兩個焦點構成等邊三角形,則離心率e=________。
e=

試題分析:根據(jù)題意,橢圓的一個頂點與兩個焦點構成等邊三角形,則可知cos60 ==,故可知橢圓的離心率為
點評:本題考查橢圓的標準方程,以及簡單性質(zhì)的應用,得到 cos60= ,是解題的關鍵
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設雙曲線的頂點為,該雙曲線又與直線交于兩點,且為坐標原點)。
(1)求此雙曲線的方程;
(2)求

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

為雙曲線的左右焦點,點P在雙曲線上,的平分線分線段的比為5∶1,則雙曲線的離心率的取值范圍是           .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

(1)已知 的圖象為雙曲線,在雙曲線的兩支上分別取點,則線段的最小值為   ; 
(2)已知 的圖象為雙曲線,在此雙曲線的兩支上分別取點,則線段的最小值為   。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知有相同兩焦點的橢圓和雙曲線,是它們的一個交點,則的形狀是 (   )
A.銳角三角形B.直角三角形C.鈍有三角形D.等腰三角形

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

與直線x+2y+3=0垂直,且與拋物線y = x2 相切的直線方程是         

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C的長軸長為,一個焦點的坐標為(1,0).
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)設直線l:y=kx與橢圓C交于A,B兩點,點P為橢圓的右頂點.
(。┤糁本l斜率k=1,求△ABP的面積;
(ⅱ)若直線AP,BP的斜率分別為,,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

方程+=1({1,2,3,4, ,2013})的曲線中,所有圓面積的和等于       ,離心率最小的橢圓方程為                      .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,設拋物線方程為,為直線上任意一點,過引拋物線的切線,切點分別為

(1)求證:三點的橫坐標成等差數(shù)列;
(2)已知當點的坐標為時,.求此時拋物線的方程。

查看答案和解析>>

同步練習冊答案