在公差不為0的等差數(shù)列{an}中,已知a1=1,且a2,a5,a14成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=2nan,求數(shù)列{bn}的前n項(xiàng)和Tn
考點(diǎn):等差數(shù)列與等比數(shù)列的綜合
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知得(1+4d)2=(1+d)(1+13d),由此能求出an=2n-1.
(2)由bn=(2n-1)•2n,利用錯位相減法能求出Tn=6+2n+1(2n-3)
解答: 解:(1)設(shè)數(shù)列{an}的公差為d,
由題知,
a
2
5
=a2a14
,…(1分)
∵a1=1,∴(1+4d)2=(1+d)(1+13d),…(2分)
即d2-2d=0,又∵d≠0,∴d=2…(4分)
∴an=1+2(n-1),∴an=2n-1.…(5分)
(2)∵bn=(2n-1)•2n,…(6分)
Tn=1×21+3×22+5×23+…+(2n-1)×2n2Tn=1×22+3×23+5×24+…+(2n-3)×2n+(2n-1)×2n+1
①-②得-Tn=2+23+24+…+2n+1-(2n-1)×2n+1…(9分)
=2+
8-2n+2
1-2
-(2n-1)×2n+1

=2-8+2n+2-(2n-1)×2n+1
=-6+2n+1(2-2n+1)=-6+2n+1(3-2n)…(11分)
Tn=6+2n+1(2n-3).…(12分)
點(diǎn)評:本題考查數(shù)列的通項(xiàng)公式的求法,考查數(shù)列的通項(xiàng)公式的求法,解題時要認(rèn)真審題,注意錯位相減法的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某房間原有10人,他們的平均身高為174厘米,當(dāng)身高為185厘米的第11人進(jìn)入房間后,則該房間內(nèi)的人平均身高為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的偶函數(shù)滿足f(x)滿足f(x)=-
1
f(x-1)
,當(dāng)x∈[3,4]時,f(x)=x-2,則( 。
A、f(sin2)>f(cos2)
B、f(sin
π
3
)>f(cos
π
3
C、f(sin1)>f(cos1)
D、f(sin
3
2
)>f(cos
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求y=
2
3
x3-2x2+3的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin(2ωx-
π
3
)(ω>0)圖象的一個對稱中心到最近對稱軸的距離為
π
4
,則ω的值為( 。
A、
1
3
B、
1
2
C、1
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一圓經(jīng)過點(diǎn)A(2,-3)和B(-2,-5),且圓心C在直線l:x-2y-3=0上,
(1)求此圓的標(biāo)準(zhǔn)方程;
(2)判斷點(diǎn)M1(0,1),M2(2,-5)與該圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從100名學(xué)生中抽取20名學(xué)生某次數(shù)學(xué)考試成績(單位:分)的頻率分布直方圖如下:
(1)求頻率分布直方圖中a的值;
(2)估計(jì)總體中成績落在[50,70)中的學(xué)生人數(shù);
(3)估計(jì)總體的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列 {an}的前n項(xiàng)和為 Sn,a5+a6=24,S11=143數(shù)列 {bn}的前n項(xiàng)和為Tn滿足2an-1Tn-(a1-1)(n∈N*)
(Ⅰ)求數(shù)列 {an}的通項(xiàng)公式及數(shù)列 {
1
anan+1
}
的前n項(xiàng)和;
(Ⅱ)是否存在非零實(shí)數(shù) λ,使得數(shù)列 {bn}為等比數(shù)列?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin(ωx+φ)(A>0,ω>0,-π<φ<0),y=f(x)的周期為π,其圖象最高點(diǎn)(
8
,1).
(1)求該函數(shù)的解析式;
(2)用“五點(diǎn)法”畫出函數(shù)y=f(x)在區(qū)間[0,π]上的圖象;
(3)方程f(x)=a在[
8
8
]上有兩個相異的根x1、x2,求x1+x2的值.

查看答案和解析>>

同步練習(xí)冊答案