已知函數(shù)f(x)=1n(x-1)-k(x-1)+1,若f(x)≤0恒成立,則實數(shù)k的取值范圍為
k≥1
k≥1
分析:利用導數(shù)研究函數(shù)的單調(diào)性,求出函數(shù)的最大值,使最大值小于等于0,可求出k的取值范圍.
解答:解:f'(x)=
1
x-1
-k=0得x=1+
1
k
,
當k≤0時,f′(x)>0,函數(shù)f(x)在定義域內(nèi)單調(diào)遞增,f(x)≤0不恒成立,
當k>0時,函數(shù)f(x)在(1,1+
1
k
)單調(diào)遞增,在(1+
1
k
,+∞)單調(diào)遞減,
當x=1+
1
k
時,f(x)取最大值,f(1+
1
k
)=ln
1
k
≤0
∴k≥1.
故實數(shù)k的取值范圍是k≥1.
故答案為:k≥1.
點評:本題主要考查求函數(shù)的導數(shù),函數(shù)的恒成立問題,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),則實數(shù)x的取值范圍是( 。
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1,x∈Q
0,x∉Q
,則f[f(π)]=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1-x
ax
+lnx(a>0)

(1)若函數(shù)f(x)在[1,+∞)上為增函數(shù),求實數(shù)a的取值范圍;
(2)當a=1時,求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)當a=1時,求證對任意大于1的正整數(shù)n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,則下列結(jié)論中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=1+logax(a>0,a≠1),滿足f(9)=3,則f-1(log92)的值是( 。

查看答案和解析>>

同步練習冊答案