已知α∈(π,
2
),tanα=
1
3
,則sinα的值為( 。
A、
10
10
B、-
3
10
10
C、±
10
10
D、-
10
10
考點:同角三角函數(shù)基本關(guān)系的運用
專題:三角函數(shù)的求值
分析:由條件利用同角三角函數(shù)的基本關(guān)系、以及三角函數(shù)在各個象限中的符號,求得sinα的值.
解答: 解:∵α∈(π,
2
),∴sinα<0,cosα<0,
又 tanα=
sinα
cosα
=
1
3
,sin2α+cos2α=1,則sinα=-
10
10
,
故選:D.
點評:本題主要考查同角三角函數(shù)的基本關(guān)系的應(yīng)用,以及三角函數(shù)在各個象限中的符號,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的圖象過最高點M(
π
6
,3)及點N(
24
,0).
(1)求φ的值,并求f(
π
3
)的值;
(2)若將y=f(x)的圖象上各點的橫坐標(biāo)伸長到原來的兩倍(縱坐標(biāo)不變),再將得到的圖象向左平移
π
6
個單位,得到函數(shù)y=g(x)的圖象.求函數(shù)g(x)在[-
π
2
π
2
]上的單調(diào)曾區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sinx,g(x)=2
3
cosx,直線x=m與f(x),g(x)的圖象分別交M,N兩點,則|MN|的最大值為(  )
A、3
B、4
C、2
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,AD是直角△ABC斜邊上的高,沿AD把△ABC的兩部分折成直二面角(如圖2),DF⊥AC于F.
(Ⅰ)證明:BF⊥AC;
(Ⅱ)設(shè)AB=AC,E為AB的中點,在線段DC上是否存在一點P,使得DE∥平面PBF?若存在,求
DP
PC
的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間[2,4]和[1,3]上分別隨機地取一個實數(shù),記為a,b,則方程
x2
a2
+
y2
b2
=1
表示焦點在x軸上且離心率小于
3
2
的橢圓的概率為(  )
A、
3
8
B、
5
8
C、
7
8
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

i是虛數(shù)單位,復(fù)數(shù)(1-i)2的虛部為( 。
A、-2B、2C、-2iD、2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用1,2,3,4,5這五個數(shù)字組成數(shù)字不重復(fù)的五位數(shù),由這些五位數(shù)構(gòu)成集合M.我們把千位數(shù)字比萬位數(shù)字和百位數(shù)字都小,且十位數(shù)字比百位數(shù)字和個位數(shù)字都小的五位數(shù)稱為“五位凹數(shù)”(例:21435就是一個五位凹數(shù)).則從集合M中隨機抽取一個數(shù)恰是“五位凹數(shù)”的概率為( 。
A、
1
15
B、
2
15
C、
1
5
D、
4
15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
x,x≤0
log2x,x>0
,則不等式|f(x)|≥
1
2
的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

偶函數(shù)f(x)在[0,+∞)上是增函數(shù),則滿足f(2m-1)>f(m+1)的m的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案