若橢圓和雙曲線=1有公共的焦點(diǎn),則雙曲線的漸近線方程是
A.x=±B.y=±C.x=± D.y=±
D
本題考查橢圓、雙曲線的標(biāo)準(zhǔn)方程和幾何性質(zhì).
雙曲線的焦點(diǎn)在x軸上,焦點(diǎn)坐標(biāo)為因?yàn)闄E圓
和雙曲線有公共的焦點(diǎn),所以解得則雙曲線的漸近線方程為
故選D
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分15分)如圖,已知橢圓:+=1(a>b>0)的長軸AB長為4,離心率e=,O為坐標(biāo)原點(diǎn),過B的直線l與x軸垂直.P是橢圓上異于A、B的任意一點(diǎn),PH⊥x軸,H為垂足,延長HP到點(diǎn)Q使得HP=PQ,連結(jié)AQ延長交直線于點(diǎn)M,N為的中點(diǎn).
(1)求橢圓的方程;
(2)證明:Q點(diǎn)在以為直徑的圓上;
(3)試判斷直線QN與圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
橢圓的離心率為,長軸端點(diǎn)與短軸端點(diǎn)間的距離為.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)的直線與橢圓交于兩點(diǎn)為坐標(biāo)原點(diǎn),若,求
直線的斜率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線過橢圓的左焦點(diǎn)F1和一個(gè)頂點(diǎn)B,該橢圓的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題


設(shè)集合A={1,2,3,4},m,n∈A,則方程表示焦點(diǎn)在x軸上的橢圓有
A.6個(gè)B.8個(gè)C.12個(gè)D.16個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
在平面直角坐標(biāo)系xoy,已知圓心在第二象限、半徑為的圓C與直線y=x相切于坐標(biāo)原點(diǎn)O。橢圓與圓C的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為10。
(1)求圓C的方程;
(2)在圓C上存在異于原點(diǎn)的點(diǎn)Q,使Q到橢圓右焦點(diǎn)F的距離等于線段OF的長,請求出Q點(diǎn)的坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線l:x-2y+2=0過橢圓左焦點(diǎn)F1和一個(gè)頂點(diǎn)B,則該橢圓的離心率為
A.        B.        C.      D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若橢圓的對稱軸為坐標(biāo)軸,長軸長與短軸長的和為18,
一個(gè)焦點(diǎn)的坐標(biāo)是(3,0),則橢圓的標(biāo)準(zhǔn)方程為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的中心為原點(diǎn),離心率,且它的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,則此橢圓方程為             (     )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案